Dopamine: Functions, Signaling, and Association with Neurological Diseases

Cell Mol Neurobiol. 2019 Jan;39(1):31-59. doi: 10.1007/s10571-018-0632-3. Epub 2018 Nov 16.

Abstract

The dopaminergic system plays important roles in neuromodulation, such as motor control, motivation, reward, cognitive function, maternal, and reproductive behaviors. Dopamine is a neurotransmitter, synthesized in both central nervous system and the periphery, that exerts its actions upon binding to G protein-coupled receptors. Dopamine receptors are widely expressed in the body and function in both the peripheral and the central nervous systems. Dopaminergic signaling pathways are crucial to the maintenance of physiological processes and an unbalanced activity may lead to dysfunctions that are related to neurodegenerative diseases. Unveiling the neurobiology and the molecular mechanisms that underlie these illnesses may contribute to the development of new therapies that could promote a better quality of life for patients worldwide. In this review, we summarize the aspects of dopamine as a catecholaminergic neurotransmitter and discuss dopamine signaling pathways elicited through dopamine receptor activation in normal brain function. Furthermore, we describe the potential involvement of these signaling pathways in evoking the onset and progression of some diseases in the nervous system, such as Parkinson's, Schizophrenia, Huntington's, Attention Deficit and Hyperactivity Disorder, and Addiction. A brief description of new dopaminergic drugs recently approved and under development treatments for these ailments is also provided.

Keywords: Central nervous system; Dopamine pathway; Neurodegenerative diseases; Neurotransmitter.

Publication types

  • Review

MeSH terms

  • Animals
  • Brain / metabolism
  • Brain / pathology
  • Dopamine / biosynthesis
  • Dopamine / metabolism*
  • Humans
  • Models, Biological
  • Nervous System Diseases / diagnosis
  • Nervous System Diseases / metabolism*
  • Nervous System Diseases / therapy
  • Signal Transduction*

Substances

  • Dopamine