A Fully Integrated RF-Powered Energy-Replenishing Current-Controlled Stimulator

IEEE Trans Biomed Circuits Syst. 2019 Feb;13(1):191-202. doi: 10.1109/TBCAS.2018.2881800. Epub 2018 Nov 16.

Abstract

This paper presents a fully-integrated current-controlled stimulator that is powered directly from on-chip coil antenna and achieves adiabatic energy-replenishing operation without any bulky external components. Adiabatic supply voltages, which can reach a differential range of up to 7.2 V, are directly generated from an on-chip 190-MHz resonant LC tank via a self-cascading/folding rectifier network, bypassing the losses that would otherwise be introduced by the 0.8 V system supply-generating rectifier and regulator. The stimulator occupies 0.22 mm 2 in a 180 nm silicon-on-insulator process and produces differential currents up to 145 μA. Using a charge replenishing scheme, the stimulator redirects the charges accumulated across the electrodes to the system power supplies for 63.1% of stimulation energy recycling. To benchmark the efficiency of stimulation, a figure of merit termed the stimulator efficiency factor (SEF) is introduced. The adiabatic power rails and energy replenishment scheme enabled our stimulator to achieve an SEF of 6.0.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Computer Simulation
  • Electric Power Supplies*
  • Electric Stimulation / instrumentation*
  • Electricity*
  • Electrodes
  • Radio Waves*