Fast and Accurate Finite Transducer Analysis Method for Wireless Passive Impedance-Loaded SAW Sensors

Sensors (Basel). 2018 Nov 16;18(11):3988. doi: 10.3390/s18113988.

Abstract

An accurate and fast simulation tool plays an important role in the design of wireless passive impedance-loaded surface acoustic wave (SAW) sensors which have received much attention recently. This paper presents a finite transducer analysis method for wireless passive impedance-loaded SAW sensors. The finite transducer analysis method uses a numerically combined finite element method-boundary element method (FEM/BEM) model to analyze non-periodic transducers. In non-periodic transducers, FEM/BEM was the most accurate analysis method until now, however this method consumes central processing unit (CPU) time. This paper presents a faster algorithm to calculate the bulk wave part of the equation coefficient which usually requires a long time. A complete non-periodic FEM/BEM model of the impedance sensors was constructed. Modifications were made to the final equations in the FEM/BEM model to adjust for the impedance variation of the sensors. Compared with the conventional method, the proposed method reduces the computation time efficiently while maintaining the same high degree of accuracy. Simulations and their comparisons with experimental results for test devices are shown to prove the effectiveness of the analysis method.

Keywords: boundary element method; finite element method; surface acoustic wave (SAW) sensor; wireless passive impedance-loaded SAW sensor.