BAR domain proteins-a linkage between cellular membranes, signaling pathways, and the actin cytoskeleton

Biophys Rev. 2018 Dec;10(6):1587-1604. doi: 10.1007/s12551-018-0467-7. Epub 2018 Nov 19.


Actin filament assembly typically occurs in association with cellular membranes. A large number of proteins sit at the interface between actin networks and membranes, playing diverse roles such as initiation of actin polymerization, modulation of membrane curvature, and signaling. Bin/Amphiphysin/Rvs (BAR) domain proteins have been implicated in all of these functions. The BAR domain family of proteins comprises a diverse group of multi-functional effectors, characterized by their modular architecture. In addition to the membrane-curvature sensing/inducing BAR domain module, which also mediates antiparallel dimerization, most contain auxiliary domains implicated in protein-protein and/or protein-membrane interactions, including SH3, PX, PH, RhoGEF, and RhoGAP domains. The shape of the BAR domain itself varies, resulting in three major subfamilies: the classical crescent-shaped BAR, the more extended and less curved F-BAR, and the inverse curvature I-BAR subfamilies. Most members of this family have been implicated in cellular functions that require dynamic remodeling of the actin cytoskeleton, such as endocytosis, organelle trafficking, cell motility, and T-tubule biogenesis in muscle cells. Here, we review the structure and function of mammalian BAR domain proteins and the many ways in which they are interconnected with the actin cytoskeleton.

Keywords: Actin cytoskeleton; BAR domain; Membrane remodeling; Rho GTPases; Signaling.

Publication types

  • Review