Background: Extreme PCR in <30 s and high-speed melting of PCR products in <5 s are recent advances in the turnaround time of DNA analysis. Previously, these steps had been performed on different specialized instruments. Integration of both extreme PCR and high-speed melting with real-time fluorescence monitoring for detection and genotyping is presented here.
Methods: A microfluidic platform was enhanced for speed using cycle times as fast as 1.05 s between 66.4 °C and 93.7 °C, with end point melting rates of 8 °C/s. Primer and polymerase concentrations were increased to allow short cycle times. Synthetic sequences were used to amplify fragments of hepatitis B virus (70 bp) and Clostridium difficile (83 bp) by real-time PCR and high-speed melting on the same instrument. A blinded genotyping study of 30 human genomic samples at F2 c.*97, F5 c.1601, MTHFR c.665, and MTHFR c.1286 was also performed.
Results: Standard rapid-cycle PCR chemistry did not produce any product when total cycling times were reduced to <1 min. However, efficient amplification was possible with increased primer (5 μmol/L) and polymerase (0.45 U/μL) concentrations. Infectious targets were amplified and identified in 52 to 71 s. Real-time PCR and genotyping of single-nucleotide variants from human DNA was achieved in 75 to 87 s and was 100% concordant to known genotypes.
Conclusions: Extreme PCR with high-speed melting can be performed in about 1 min. The integration of extreme PCR and high-speed melting shows that future molecular assays at the point of care for identification, quantification, and variant typing are feasible.
© 2018 American Association for Clinical Chemistry.