Transcriptome Deconvolution of Heterogeneous Tumor Samples with Immune Infiltration
- PMID: 30469014
- PMCID: PMC6249353
- DOI: 10.1016/j.isci.2018.10.028
Transcriptome Deconvolution of Heterogeneous Tumor Samples with Immune Infiltration
Abstract
Transcriptome deconvolution in cancer and other heterogeneous tissues remains challenging. Available methods lack the ability to estimate both component-specific proportions and expression profiles for individual samples. We present DeMixT, a new tool to deconvolve high-dimensional data from mixtures of more than two components. DeMixT implements an iterated conditional mode algorithm and a novel gene-set-based component merging approach to improve accuracy. In a series of experimental validation studies and application to TCGA data, DeMixT showed high accuracy. Improved deconvolution is an important step toward linking tumor transcriptomic data with clinical outcomes. An R package, scripts, and data are available: https://github.com/wwylab/DeMixTallmaterials.
Keywords: Cancer; Computational Bioinformatics; Transcriptomics.
Published by Elsevier Inc.
Figures
Similar articles
-
Deconvolution of heterogeneous tumor samples using partial reference signals.PLoS Comput Biol. 2020 Nov 30;16(11):e1008452. doi: 10.1371/journal.pcbi.1008452. eCollection 2020 Nov. PLoS Comput Biol. 2020. PMID: 33253170 Free PMC article.
-
CDSeq: A novel complete deconvolution method for dissecting heterogeneous samples using gene expression data.PLoS Comput Biol. 2019 Dec 2;15(12):e1007510. doi: 10.1371/journal.pcbi.1007510. eCollection 2019 Dec. PLoS Comput Biol. 2019. PMID: 31790389 Free PMC article.
-
swCAM: estimation of subtype-specific expressions in individual samples with unsupervised sample-wise deconvolution.Bioinformatics. 2022 Feb 7;38(5):1403-1410. doi: 10.1093/bioinformatics/btab839. Bioinformatics. 2022. PMID: 34904628 Free PMC article.
-
Computational deconvolution of transcriptomics data from mixed cell populations.Bioinformatics. 2018 Jun 1;34(11):1969-1979. doi: 10.1093/bioinformatics/bty019. Bioinformatics. 2018. PMID: 29351586 Review.
-
Computational solutions for spatial transcriptomics.Comput Struct Biotechnol J. 2022 Sep 1;20:4870-4884. doi: 10.1016/j.csbj.2022.08.043. eCollection 2022. Comput Struct Biotechnol J. 2022. PMID: 36147664 Free PMC article. Review.
Cited by
-
Challenges and perspectives in computational deconvolution of genomics data.Nat Methods. 2024 Mar;21(3):391-400. doi: 10.1038/s41592-023-02166-6. Epub 2024 Feb 19. Nat Methods. 2024. PMID: 38374264 Review.
-
Single-cell morphodynamical trajectories enable prediction of gene expression accompanying cell state change.bioRxiv [Preprint]. 2024 Jan 19:2024.01.18.576248. doi: 10.1101/2024.01.18.576248. bioRxiv. 2024. PMID: 38293173 Free PMC article. Preprint.
-
Frozen tissue coring and layered histological analysis improves cell type-specific proteogenomic characterization of pancreatic adenocarcinoma.Clin Proteomics. 2024 Jan 30;21(1):7. doi: 10.1186/s12014-024-09450-3. Clin Proteomics. 2024. PMID: 38291365 Free PMC article.
-
Clinically impactful metabolic subtypes of pancreatic ductal adenocarcinoma (PDAC).Front Genet. 2023 Oct 30;14:1282824. doi: 10.3389/fgene.2023.1282824. eCollection 2023. Front Genet. 2023. PMID: 38028629 Free PMC article.
-
DeMixSC: a deconvolution framework that uses single-cell sequencing plus a small benchmark dataset for improved analysis of cell-type ratios in complex tissue samples.bioRxiv [Preprint]. 2023 Nov 11:2023.10.10.561733. doi: 10.1101/2023.10.10.561733. bioRxiv. 2023. PMID: 37873318 Free PMC article. Preprint.
References
-
- Gong T., Szustakowski J.D. DeconRNASeq: a statistical framework for deconvolution of heterogeneous tissue samples based on mRNA-Seq data. Bioinformatics. 2013;29:1083–1085. - PubMed
-
- Besag J. On the statistical analysis of dirty pictures. J. R. Stat. Soc. Series B Stat. Methodol. 1986;48:259–302.
-
- Dave S.S., Wright G., Tan B., Rosenwald A., Gascoyne R.D., Chan W.C., Fisher R.I., Braziel R.M., Rimsza L.M., Grogan T.M. Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N. Engl. J. Med. 2004;351:2159–2169. - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
