Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Nov 23;18(Suppl 1):179.
doi: 10.1186/s12866-018-1280-y.

Enhancing vector refractoriness to trypanosome infection: achievements, challenges and perspectives

Affiliations

Enhancing vector refractoriness to trypanosome infection: achievements, challenges and perspectives

Henry M Kariithi et al. BMC Microbiol. .

Abstract

With the absence of effective prophylactic vaccines and drugs against African trypanosomosis, control of this group of zoonotic neglected tropical diseases depends the control of the tsetse fly vector. When applied in an area-wide insect pest management approach, the sterile insect technique (SIT) is effective in eliminating single tsetse species from isolated populations. The need to enhance the effectiveness of SIT led to the concept of investigating tsetse-trypanosome interactions by a consortium of researchers in a five-year (2013-2018) Coordinated Research Project (CRP) organized by the Joint Division of FAO/IAEA. The goal of this CRP was to elucidate tsetse-symbiome-pathogen molecular interactions to improve SIT and SIT-compatible interventions for trypanosomoses control by enhancing vector refractoriness. This would allow extension of SIT into areas with potential disease transmission. This paper highlights the CRP's major achievements and discusses the science-based perspectives for successful mitigation or eradication of African trypanosomosis.

Keywords: Glossina; Hytrosaviridae; Microbiota; Paratransgenesis; Trypanosoma-refractoriness, sterile insect technique; Vector competence.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
The tsetse fly and its associated microorganisms. Tsetse flies can harbor multiple microbes, including the bacterial endosymbionts obligate Wigglesworthia, facultative Sodalis, parasitic Wolbachia and Spiroplasma, as well as a taxonomically diverse population of environmentally acquired enteric bacteria, a virus (salivary gland hypertrophy virus, SGHV) and protozoan African trypanosomes. All tsetse harbor Wigglesworthia, while the presence of Sodalis, Wolbachia, Spiroplasma, SGHV and trypanosomes is fly population dependent. Wigglesworthia, Sodalis and SGHV are transmitted to developing intrauterine larval offspring via maternal milk secretions, while Wolbachia is transmitted through the germline. Spiroplasma’s mode of vertical transmission is currently unknown. Pathogenic trypanosomes are acquired by tsetse when they feed on an infected animal. The parasites must then undergo a complex development cycle in the fly before they can be successfully transmitted to a new host, where they cause disease. (This figure is adapted with permission from Aksoy et al., 2013) [179]
Fig. 2
Fig. 2
Overview of the current status on tsetse paratransgenesis. Strategies have been developed for i) isolation and in vitro cultivation of Sodalis glossinidius, ii) establishing stable chromosomal expression in Sodalis allowing strong and constitutive expression of anti-trypanosome compounds in the absence of antibiotic selection and iii) the sustainable colonization of tsetse fly and its subsequent generations with genetically modified Sodalis through microinjection of the bacterium into third-instar larvae [; this issue]. Taken together, the necessary technology for application of Sodalis as a delivery system in tsetse paratransgenic has been developed, but the Sodalis-mediated inhibition of parasite development in the insect host is yet to be demonstrated. The final main bottleneck remains the identification of a highly potent and stable trypanolytic component effectively blocking parasite transmission by the fly without impairing symbiont and vector fitness

Similar articles

Cited by

References

    1. Mattioli RC, Feldmann U, Hendrickx G, Wint W, Jannin J, Slingenbergh J. Tsetse and trypanosomiasis intervention policies supporting sustainable animal-agricultural development. J Food Agric Environ. 2004;2:310–314.
    1. Cecchi G, Mattioli RC, Slingenbergh J, De La Rocque S. Land cover and tsetse fly distributions in sub-Saharan Africa. Med Vet Entomol. 2008;22:364–373. doi: 10.1111/j.1365-2915.2008.00747.x. - DOI - PubMed
    1. Barrett MP, Vincent IM, Burchmore RJ, Kazibwe AJ, Matovu E. Drug resistance in human African trypanosomiasis. Future Microbiol. 2011;6:1037–1047. doi: 10.2217/fmb.11.88. - DOI - PubMed
    1. Geerts S, Holmes PH, Eisler MC, Diall O. African bovine trypanosomiasis: the problem of drug resistance. Trends Parasitol. 2001;17:25–28. doi: 10.1016/S1471-4922(00)01827-4. - DOI - PubMed
    1. Schofield CJ, Kabayo JP. Trypanosomiasis vector control in Africa and Latin America. Parasit Vectors. 2008;1:24. doi: 10.1186/1756-3305-1-24. - DOI - PMC - PubMed

Publication types