Stromal extracellular matrix is a microenvironmental cue promoting resistance to EGFR tyrosine kinase inhibitors in lung cancer cells

Int J Biochem Cell Biol. 2019 Jan;106:96-106. doi: 10.1016/j.biocel.2018.11.001. Epub 2018 Nov 22.

Abstract

The acquisition of resistance to EGFR tyrosine kinase inhibitors (TKIs) remains a critical problem in lung cancer clinic, but the underlying mechanisms have remained incompletely understood. Although the TKI-induced or -selected genetic changes are known to drive resistance, resistance also occurs in tumor cells without genetic changes through poorly-characterized processes. Here, we show that the extracellular matrix (ECM) from various components of the tumor microenvironment, including neighboring tumor cells and fibroblasts, may be the driver of resistance in the absence of genetic changes. Unlike genetic changes, which may evolve during relatively long time of chronic EGFR TKI treatment to drive resistance, briefly culturing on de-cellularized ECM, or co-culturing with the ECM donor cells, immediately confers resistance to tumor cells that are otherwise sensitive to EGFR TKIs. We show evidence that collagen in the ECM may be its primary constituent driving resistance, at least partly through the collagen receptor Integrin-β1. Intriguingly, such effect of ECM and collagen is dose-dependent and reversible, suggesting a potential clinic-relevant application for targeting this effect. Collectively, our results reveal that the stromal ECM acts as a microenvironmental cue promoting EGFR TKI resistance in lung cancer cells, and targeting collagen and Integrin-β1 may be useful for treating resistance, especially the resistance without clearly-defined genetic changes, for which effective therapeutics are lacking.

Keywords: EGFR; Extracellular matrix; Microenvironment; Resistance; Tyrosine kinase inhibitor.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Line, Tumor
  • Drug Resistance, Neoplasm / drug effects*
  • ErbB Receptors / antagonists & inhibitors
  • ErbB Receptors / genetics
  • ErbB Receptors / metabolism
  • Extracellular Matrix / genetics
  • Extracellular Matrix / metabolism*
  • Extracellular Matrix / pathology
  • Humans
  • Lung Neoplasms* / drug therapy
  • Lung Neoplasms* / genetics
  • Lung Neoplasms* / metabolism
  • Lung Neoplasms* / pathology
  • Neoplasm Proteins* / antagonists & inhibitors
  • Neoplasm Proteins* / genetics
  • Neoplasm Proteins* / metabolism
  • Protein Kinase Inhibitors / pharmacology*
  • Tumor Microenvironment / drug effects*

Substances

  • Neoplasm Proteins
  • Protein Kinase Inhibitors
  • EGFR protein, human
  • ErbB Receptors