Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jan;130(1):25-37.
doi: 10.1016/j.clinph.2018.10.010. Epub 2018 Nov 15.

Optimized deep neural network architecture for robust detection of epileptic seizures using EEG signals

Affiliations

Optimized deep neural network architecture for robust detection of epileptic seizures using EEG signals

Ramy Hussein et al. Clin Neurophysiol. 2019 Jan.

Abstract

Objective: Automatic detection of epileptic seizures based on deep learning methods received much attention last year. However, the potential of deep neural networks in seizure detection has not been fully exploited in terms of the optimal design of the model architecture and the detection power of the time-series brain data. In this work, a deep neural network architecture is introduced to learn the temporal dependencies in Electroencephalogram (EEG) data for robust detection of epileptic seizures.

Methods: A deep Long Short-Term Memory (LSTM) network is first used to learn the high-level representations of different EEG patterns. Then, a Fully Connected (FC) layer is adopted to extract the most robust EEG features relevant to epileptic seizures. Finally, these features are supplied to a softmax layer to output predicted labels.

Results: The results on a benchmark clinical dataset reveal the prevalence of the proposed approach over the baseline techniques; achieving 100% classification accuracy, 100% sensitivity, and 100% specificity. Our approach is additionally shown to be robust in noisy and real-life conditions. It maintains high detection performance in the existence of common EEG artifacts (muscle activities and eye movement) as well as background noise.

Conclusions: We demonstrate the clinical feasibility of our seizure detection approach achieving superior performance over the cutting-edge techniques in terms of seizure detection performance and robustness.

Significance: Our seizure detection approach can contribute to accurate and robust detection of epileptic seizures in ideal and real-life situations.

Keywords: Deep learning; Electroencephalogram (EEG); Epilepsy; LSTM; Seizure detection.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources