Purpose: The objective of this study was to develop a self-microemulsifying drug delivery system (SMEDDS) formulation for the oral delivery of CRV431, a non-immunosuppressive analogue of cyclosporine A. Relative to cyclosporine A, CRV431 is poorly soluble in lipid solvents and thusly presents a challenge for the development of a formulation of sufficient oral bioavailability for clinical use.
Methods: The solubility of CRV431, a cyclosporine derivative, was determined in a range of commonly used surfactants, oils and co-solvents. A pseudo-ternary phase diagram was constructed from the most soluble excipients and prototype formulations, SERIES 1 and SERIES 2 were developed. The pharmacokinetics, following single oral doses of 1 and 3 mg/kg of CRV431 SMEDDS, was studied in healthy human volunteers using liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS).
Results: The maximum drug load for the SERIES 1 formulations was less than 40 mg/ml. Manipulation of the excipient ratios allowed for the development of SERIES 2 formulations, which had higher drug loading capacity and stability for CRV431 compared to SERIES 1. Further improvements allowed for the development of an optimized SMEDDS formulation containing up to 90 mg/ml CRV431 and which generated a microemulsion mean particle size of 25 nm when dispersed into aqueous media. The pharmacokinetics of the optimized CRV431 SMEDDS displayed excellent total body exposure and dose-proportional effects in humans, and high drug levels in the liver of rats.
Conclusions: The developed SMEDDS formulation should allow for effective clinical development of CRV431, targeted to the treatment of liver diseases including hepatitis B (HBV), fibrosis, and hepatocellular carcinoma.