Hyperactivation of ERK by multiple mechanisms is toxic to RTK-RAS mutation-driven lung adenocarcinoma cells
- PMID: 30475204
- PMCID: PMC6298772
- DOI: 10.7554/eLife.33718
Hyperactivation of ERK by multiple mechanisms is toxic to RTK-RAS mutation-driven lung adenocarcinoma cells
Abstract
Synthetic lethality results when mutant KRAS and EGFR proteins are co-expressed in human lung adenocarcinoma (LUAD) cells, revealing the biological basis for mutual exclusivity of KRAS and EGFR mutations. We have now defined the biochemical events responsible for the toxic effects by combining pharmacological and genetic approaches and to show that signaling through extracellular signal-regulated kinases (ERK1/2) mediates the toxicity. These findings imply that tumors with mutant oncogenes in the RAS pathway must restrain the activity of ERK1/2 to avoid toxicities and enable tumor growth. A dual specificity phosphatase, DUSP6, that negatively regulates phosphorylation of (P)-ERK is up-regulated in EGFR- or KRAS-mutant LUAD, potentially protecting cells with mutations in the RAS signaling pathway, a proposal supported by experiments with DUSP6-specific siRNA and an inhibitory drug. Targeting DUSP6 or other negative regulators might offer a treatment strategy for certain cancers by inducing the toxic effects of RAS-mediated signaling.
Keywords: DUSP6; EGFR; KRAS; cancer biology; feedback inhibition; human; mouse; mutual exclusivity; synthetic lethality.
© 2018, Unni et al.
Conflict of interest statement
AU, BH, MO, SW, JF, WL, HV No competing interests declared
Figures
Similar articles
-
p65BTK is a novel potential actionable target in KRAS-mutated/EGFR-wild type lung adenocarcinoma.J Exp Clin Cancer Res. 2019 Jun 14;38(1):260. doi: 10.1186/s13046-019-1199-7. J Exp Clin Cancer Res. 2019. PMID: 31200752 Free PMC article.
-
EGFR inhibition evokes innate drug resistance in lung cancer cells by preventing Akt activity and thus inactivating Ets-1 function.Proc Natl Acad Sci U S A. 2015 Jul 21;112(29):E3855-63. doi: 10.1073/pnas.1510733112. Epub 2015 Jul 6. Proc Natl Acad Sci U S A. 2015. PMID: 26150526 Free PMC article.
-
Evidence that synthetic lethality underlies the mutual exclusivity of oncogenic KRAS and EGFR mutations in lung adenocarcinoma.Elife. 2015 Jun 5;4:e06907. doi: 10.7554/eLife.06907. Elife. 2015. PMID: 26047463 Free PMC article.
-
How Cancer Genomics Drives Cancer Biology: Does Synthetic Lethality Explain Mutually Exclusive Oncogenic Mutations?Cold Spring Harb Symp Quant Biol. 2016;81:247-255. doi: 10.1101/sqb.2016.81.030866. Epub 2017 Jan 25. Cold Spring Harb Symp Quant Biol. 2016. PMID: 28123049 Review.
-
[Therapeutic possibilities in KRAS-mutant lung adenocarcinoma].Magy Onkol. 2020 Sep 23;64(3):231-244. Epub 2020 Aug 6. Magy Onkol. 2020. PMID: 33196710 Review. Hungarian.
Cited by
-
Signaling levels mold the RAS mutation tropism of urethane.Elife. 2021 May 17;10:e67172. doi: 10.7554/eLife.67172. Elife. 2021. PMID: 33998997 Free PMC article.
-
From targeted therapy to a novel way: Immunogenic cell death in lung cancer.Front Med (Lausanne). 2022 Dec 23;9:1102550. doi: 10.3389/fmed.2022.1102550. eCollection 2022. Front Med (Lausanne). 2022. PMID: 36619616 Free PMC article. Review.
-
Disruption of dNTP homeostasis by ribonucleotide reductase hyperactivation overcomes AML differentiation blockade.Blood. 2022 Jun 30;139(26):3752-3770. doi: 10.1182/blood.2021015108. Blood. 2022. PMID: 35439288 Free PMC article.
-
ERK: A Double-Edged Sword in Cancer. ERK-Dependent Apoptosis as a Potential Therapeutic Strategy for Cancer.Cells. 2021 Sep 22;10(10):2509. doi: 10.3390/cells10102509. Cells. 2021. PMID: 34685488 Free PMC article. Review.
-
PPP6C negatively regulates oncogenic ERK signaling through dephosphorylation of MEK.Cell Rep. 2021 Mar 30;34(13):108928. doi: 10.1016/j.celrep.2021.108928. Cell Rep. 2021. PMID: 33789117 Free PMC article.
References
-
- Akbani R, Ng PK, Werner HM, Shahmoradgoli M, Zhang F, Ju Z, Liu W, Yang JY, Yoshihara K, Li J, Ling S, Seviour EG, Ram PT, Minna JD, Diao L, Tong P, Heymach JV, Hill SM, Dondelinger F, Städler N, Byers LA, Meric-Bernstam F, Weinstein JN, Broom BM, Verhaak RG, Liang H, Mukherjee S, Lu Y, Mills GB. A pan-cancer proteomic perspective on The Cancer Genome Atlas. Nature Communications. 2014;5:3887. doi: 10.1038/ncomms4887. - DOI - PMC - PubMed
-
- Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, Wilson CJ, Lehár J, Kryukov GV, Sonkin D, Reddy A, Liu M, Murray L, Berger MF, Monahan JE, Morais P, Meltzer J, Korejwa A, Jané-Valbuena J, Mapa FA, Thibault J, Bric-Furlong E, Raman P, Shipway A, Engels IH, Cheng J, Yu GK, Yu J, Aspesi P, de Silva M, Jagtap K, Jones MD, Wang L, Hatton C, Palescandolo E, Gupta S, Mahan S, Sougnez C, Onofrio RC, Liefeld T, MacConaill L, Winckler W, Reich M, Li N, Mesirov JP, Gabriel SB, Getz G, Ardlie K, Chan V, Myer VE, Weber BL, Porter J, Warmuth M, Finan P, Harris JL, Meyerson M, Golub TR, Morrissey MP, Sellers WR, Schlegel R, Garraway LA. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012;483:603–607. doi: 10.1038/nature11003. - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
Miscellaneous
