The current study evaluated the inhalation toxicity of trichloroethylene (TCE) at 0, 10, 100, 250 and 400 ppm in Sprague-Dawley rats for 10 day period, because the subacute inhalation toxicity of TCE on serum lipid profile, glucose and some biochemical parameters has not been previously reported. TCE vapors were generated using the dynamic generation system based on evaporation method in the exposure chamber. On the basis of the results, mean serum low-density lipoprotein (LDL) and albumin (ALB) decreased significantly in all the groups exposed to TCE compared with the control group (p < .005), but there was a significant increase for parameters: fasting blood glucose (FBG) and alkaline phosphatase (ALP) (p < .005). Rats exposed to 400 ppm TCE showed a significant decrease in serum cholesterol (CHOL) and protein (Pr) compared with the control group (p < .005). A negative relationship was found between triglycerides (TG), very low density lipoprotein (VLDL), CHOL, LDL, Pr, ALB and urea levels and the subacute exposure to concentrations of TCE (R2 = -0.26, p < .05), but there was a direct correlation for parameters FBG, ALP and alanine aminotransferase (ALT) (R2 = 0.42, p < .05). In conclusion, studies with Sprague-Dawley rats demonstrated that subacute inhalation exposure to TCE (≥ 100 PPM) is associated with biochemical and lipotoxicity in the form of decreased serum ALB and LDL and raised ALP and glucose levels. The present study also provides additional evidence relating to decreased serum CHOL and Pr after subacute inhalation exposure to 400 ppm TCE.
Keywords: Trichloroethylene; animal model; biochemical parameter; glucose; lipid profile; subacute exposure.