Phytophthora infestans Sporangia Produced in Culture and on Tomato Leaflet Lesions Show Marked Differences in Indirect Germination Rates, Aggressiveness, and Global Transcription Profiles

Mol Plant Microbe Interact. 2019 May;32(5):515-526. doi: 10.1094/MPMI-09-18-0255-TA. Epub 2019 Mar 22.

Abstract

Sporangia of Phytophthora infestans from pure cultures on agar plates are typically used in lab studies, whereas sporangia from leaflet lesions drive natural infections and epidemics. Multiple assays were performed to determine if sporangia from these two sources are equivalent. Sporangia from plate cultures showed much lower rates of indirect germination and produced much less disease in field and moist-chamber tests. This difference in aggressiveness was observed whether the sporangia had been previously incubated at 4°C (to induce indirect germination) or at 21°C (to prevent indirect germination). Furthermore, lesions caused by sporangia from plates produced much less sporulation. RNA-Seq analysis revealed that thousands of the >17,000 P. infestans genes with a RPKM (reads per kilobase of exon model per million mapped reads) >1 were differentially expressed in sporangia obtained from plate cultures of two independent field isolates compared with sporangia of those isolates from leaflet lesions. Among the significant differentially expressed genes (DEGs), putative RxLR effectors were overrepresented, with almost half of the 355 effectors with RPKM >1 being up- or downregulated. DEGs of both isolates include nine flagellar-associated genes, and all were down-regulated in plate sporangia. Ten elicitin genes were also detected as DEGs in both isolates, and nine (including INF1) were up-regulated in plate sporangia. These results corroborate previous observations that sporangia produced from plates and leaflets sometimes yield different experimental results and suggest hypotheses for potential mechanisms. We caution that use of plate sporangia in assays may not always produce results reflective of natural infections and epidemics.

MeSH terms

  • Phytophthora infestans / genetics
  • Phytophthora infestans / growth & development
  • Phytophthora infestans / physiology*
  • Solanum lycopersicum* / parasitology
  • Sporangia / genetics
  • Sporangia / growth & development
  • Sporangia / physiology*
  • Transcriptome*