Fluorine 18-FDG PET/CT and Diffusion-weighted MRI for Malignant versus Benign Pulmonary Lesions: A Meta-Analysis

Radiology. 2019 Feb;290(2):525-534. doi: 10.1148/radiol.2018181159. Epub 2018 Nov 27.


Purpose To perform a meta-analysis of the literature to compare the diagnostic performance of fluorine 18 fluorodeoxyglucose PET/CT and diffusion-weighted (DW) MRI in the differentiation of malignant and benign pulmonary nodules and masses. Materials and Methods Published English-language studies on the diagnostic accuracy of PET/CT and/or DW MRI in the characterization of pulmonary lesions were searched in relevant databases through December 2017. The primary focus was on studies in which joint DW MRI and PET/CT were performed in the entire study population, to reduce interstudy heterogeneity. For DW MRI, lesion-to-spinal cord signal intensity ratio and apparent diffusion coefficient were evaluated; for PET/CT, maximum standard uptake value was evaluated. The pooled sensitivities, specificities, diagnostic odds ratios, and areas under the receiver operating characteristic curve (AUCs) for PET/CT and DW MRI were determined along with 95% confidence intervals (CIs). Results Thirty-seven studies met the inclusion criteria, with a total of 4224 participants and 4463 lesions (3090 malignant lesions [69.2%]). In the primary analysis of joint DW MRI and PET/CT studies (n = 6), DW MRI had a pooled sensitivity and specificity of 83% (95% CI: 75%, 89%) and 91% (95% CI: 80%, 96%), respectively, compared with 78% (95% CI: 70%, 84%) (P = .01 vs DW MRI) and 81% (95% CI: 72%, 88%) (P = .056 vs DW MRI) for PET/CT. DW MRI yielded an AUC of 0.93 (95% CI: 0.90, 0.95), versus 0.86 (95% CI: 0.83, 0.89) for PET/CT (P = .001). The diagnostic odds ratio of DW MRI (50 [95% CI: 19, 132]) was superior to that of PET/CT (15 [95% CI: 7, 32]) (P = .006). Conclusion The diagnostic performance of diffusion-weighted MRI is comparable or superior to that of fluorine 18 fluorodeoxyglucose PET/CT in the differentiation of malignant and benign pulmonary lesions. © RSNA, 2018 Online supplemental material is available for this article. See also the editorial by Schiebler in this issue.

Publication types

  • Meta-Analysis
  • Systematic Review

MeSH terms

  • Diagnosis, Differential
  • Diagnostic Imaging*
  • Fluorodeoxyglucose F18 / therapeutic use
  • Humans
  • Lung Neoplasms / diagnostic imaging*
  • Sensitivity and Specificity


  • Fluorodeoxyglucose F18