The bacterial lipid II flippase MurJ functions by an alternating-access mechanism

J Biol Chem. 2019 Jan 18;294(3):981-990. doi: 10.1074/jbc.RA118.006099. Epub 2018 Nov 27.

Abstract

The peptidoglycan (PG) cell wall is an essential extracytoplasmic glycopeptide polymer that safeguards bacteria against osmotic lysis and determines cellular morphology. Bacteria use multiprotein machineries for the synthesis of the PG cell wall during cell division and elongation that can be targeted by antibiotics such as the β-lactams. Lipid II, the lipid-linked precursor for PG biogenesis, is synthesized in the inner leaflet of the cytoplasmic membrane and then translocated across the bilayer, where it is ultimately polymerized into PG. In Escherichia coli, MurJ, a member of the MOP exporter superfamily, has been recently shown to have lipid II flippase activity that depends on membrane potential. Because of its essentiality, MurJ could potentially be targeted by much needed novel antibiotics. Recent structural information suggests that a central cavity in MurJ alternates between inward- and outward-open conformations to flip lipid II, but how these conformational changes occur are unknown. Here, we utilized structure-guided cysteine cross-linking and proteolysis-coupled gel analysis to probe the conformational changes of MurJ in E. coli cells. We found that paired cysteine substitutions in transmembrane domains 2 and 8 and periplasmic loops of MurJ could be cross-linked with homobifunctional cysteine cross-linkers, indicating that MurJ can adopt both inward- and outward-facing conformations in vivo Furthermore, we show that dissipating the membrane potential with an ionophore decreases the prevalence of the inward-facing, but not the outward-facing state. Our study provides in vivo evidence that MurJ uses an alternating-access mechanism during the lipid II transport cycle.

Keywords: MOP exporter; antibacterial target; cell wall; conformational dynamics; cysteine-mediated cross-linking; glycolipid; lipid II; membrane transport; peptidoglycan.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Biological Transport, Active / physiology
  • Escherichia coli / chemistry
  • Escherichia coli / genetics
  • Escherichia coli / metabolism*
  • Escherichia coli Proteins / chemistry
  • Escherichia coli Proteins / genetics
  • Escherichia coli Proteins / metabolism*
  • Lipid Bilayers / chemistry
  • Lipid Bilayers / metabolism
  • Lipid Metabolism / physiology*
  • Phospholipid Transfer Proteins / chemistry
  • Phospholipid Transfer Proteins / genetics
  • Phospholipid Transfer Proteins / metabolism*
  • Protein Domains
  • Protein Structure, Secondary

Substances

  • Escherichia coli Proteins
  • Lipid Bilayers
  • MurJ protein, E coli
  • Phospholipid Transfer Proteins

Associated data

  • PDB/6CC4