Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 May 27;57(6):864-872.
doi: 10.1515/cclm-2018-0783.

Provisional Standardization of Hepcidin Assays: Creating a Traceability Chain With a Primary Reference Material, Candidate Reference Method and a Commutable Secondary Reference Material

Affiliations

Provisional Standardization of Hepcidin Assays: Creating a Traceability Chain With a Primary Reference Material, Candidate Reference Method and a Commutable Secondary Reference Material

Laura E Diepeveen et al. Clin Chem Lab Med. .

Abstract

Background Hepcidin concentrations measured by various methods differ considerably, complicating interpretation. Here, a previously identified plasma-based candidate secondary reference material (csRM) was modified into a serum-based two-leveled sRM. We validated its functionality to increase the equivalence between methods for international standardization. Methods We applied technical procedures developed by the International Consortium for Harmonization of Clinical Laboratory Results. The sRM, consisting of lyophilized serum with cryolyoprotectant, appeared commutable among nine different measurement procedures using 16 native human serum samples in a first round robin (RR1). Harmonization potential of the sRM was simulated in RR1 and evaluated in practice in RR2 among 11 measurement procedures using three native human plasma samples. Comprehensive purity analysis of a candidate primary RM (cpRM) was performed by state of the art procedures. The sRM was value assigned with an isotope dilution mass spectrometry-based candidate reference method calibrated using the certified pRM. Results The inter-assay CV without harmonization was 42.1% and 52.8% in RR1 and RR2, respectively. In RR1, simulation of harmonization with sRM resulted in an inter-assay CV of 11.0%, whereas in RR2 calibration with the material resulted in an inter-assay CV of 19.1%. Both the sRM and pRM passed international homogeneity criteria and showed long-term stability. We assigned values to the low (0.95±0.11 nmol/L) and middle concentration (3.75±0.17 nmol/L) calibrators of the sRM. Conclusions Standardization of hepcidin is possible with our sRM, which value is assigned by a pRM. We propose the implementation of this material as an international calibrator for hepcidin.

Keywords: harmonization; hepcidin; iron metabolism; primary reference material; secondary reference material; standardization.

Similar articles

See all similar articles

Cited by 5 articles

MeSH terms

Feedback