Melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) are indispensable for non-image-forming visual responses that sustain under prolonged illumination. For sustained signaling of ipRGCs, the melanopsin photopigment must continuously regenerate. The underlying mechanism is unknown. We discovered that a cluster of Ser/Thr sites within the C-terminal region of mammalian melanopsin is phosphorylated after a light pulse. This forms a binding site for β-arrestin 1 (βARR1) and β-arrestin 2. β-arrestin 2 primarily regulates the deactivation of melanopsin; accordingly, βαrr2-/- mice exhibit prolonged ipRGC responses after cessation of a light pulse. β-arrestin 1 primes melanopsin for regeneration. Therefore, βαrr1-/- ipRGCs become desensitized after repeated or prolonged photostimulation. The lack of either β-arrestin attenuates ipRGC response under prolonged illumination, suggesting that β-arrestin 2-mediated deactivation and β-arrestin 1-dependent regeneration of melanopsin function in sequence. In conclusion, we discovered a molecular mechanism by which β-arrestins regulate different aspects of melanopsin photoresponses and allow ipRGC-sustained responses under prolonged illumination.
Keywords: beta arrestin; melanopsin; non-visual responses to light; photophobia; pupillary reflex; retina; retinal ganglion cell.
Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.