Sulfur mustard (SM) is a toxic agent which causes severe abnormalities in an airway system such as necrosis and inflammation, oxidative stress, chronic bronchitis, shortness of breath, and chronic obstructive pulmonary disease. Although possible mechanisms of SM toxicity have been extensively considered, there is still need to find an appropriate clinical treatment to decrease chronic lung injuries caused by SM. Due to extensive progresses and achievement in tissue repairing through stem cells therapy, the importance of cell therapy for the treatment of lung injuries has been increased. However, several factors such as types of stem cells, necessary conditions for growth and proliferation of stem cells, and their homing into the target tissues are considered as the most important problems in this issue. Mesenchymal stem cells (MSCs) are a class of multipotent stem cells with proliferative and self-renewal capacity which are able to differentiate into different cell lines such as lung epithelial cells. They have a potential repairing and immune modulatory properties which make them as a good candidate for the regeneration of bronchioles tract in SM-exposed patients. Unlike chemical drugs, the differentiation and high-level safety properties of MSCs can be considered as a new strategy for the treatment of SM-injured patients with pulmonary complications. This review aims to consider the therapeutic effects of MSCs in the treatment of SM-induced pulmonary injuries in both animals and humans.
Keywords: Sulfur mustard; airway remodeling; inflammation; lung diseases; mesenchymal stem cells.