MAPLE Assembled Acetylcholinesterase⁻Polyethylenimine Hybrid and Multilayered Interfaces for Toxic Gases Detection

Sensors (Basel). 2018 Dec 4;18(12):4265. doi: 10.3390/s18124265.

Abstract

Developing a controlled method for obtaining hybrid enzymatic-based interfaces for sensing application require the use of a multiuse, reusable sensor. By controlling the interface characteristics in terms of the surface chemistry, thickness, and roughness, a tailored response toward various toxic compounds can be obtained, regarding both materials used as active surfaces and fabrication methods. Herein, we report a preliminary study on using a laser-based method (i.e., matrix-assisted pulsed laser evaporation, or MAPLE) for obtaining active polymeric⁻enzymatic interfaces as hybrid or layered coatings for detecting toxic vapors. The MAPLE fabrication consisted of the simultaneous alternating evaporation of layers of polyethylenimine (PEI) and acetylcholinesterase (AchE) in order to obtain active surfaces as both hybrid PEI-AchE and a PEI/AchE layered coating, respectively. The deposition processes of the polymer and enzyme were carried out using a double-target system and a Nd:YAG pulsed laser, operating at 0.45 J/cm² fluences with a wavelength of 266 nm and a repetition rate of 10 Hz. Fourier transform infrared spectroscopy revealed no significant changes in the functional groups of both hybrid and layered coatings compared with the initial material. The thickness and roughness, as well as the morphologies of the coatings revealed by atomic force microscopy and scanning electron microscopy showed coatings thicker than two μm that had smooth surfaces and average roughness values below six nm. The sensors were tested with simulants for nerve gases and pesticides containing phosphonate ester groups, namely dimethyl methylphosphonate (DMMP) and diisopropyl methylphosphonate (DIMP), and a different sensitivity was shown to the selected chemical agents for each of the sensors. The best sensitivities for DMMP and DIMP obtained by using a PEI-AchE coated sensor are 65 kHz and 200 kHz, respectively, whereas the best sensitivity when using multilayered interfaces is 30 kHz and 10 KHz for DIMP and DMMP, respectively.

Keywords: AchE; DIMP detection; DMMP detection; MAPLE; surface acoustic wave sensor.

MeSH terms

  • Acetylcholinesterase / chemistry*
  • Biosensing Techniques*
  • Gases / isolation & purification*
  • Gases / toxicity
  • Organophosphorus Compounds / chemistry
  • Polyethyleneimine / chemistry*
  • Pyrazines / chemistry

Substances

  • 2,5-dimethyl-3-methoxypyrazine
  • Gases
  • Organophosphorus Compounds
  • Pyrazines
  • diisopropyl methylphosphonate
  • Polyethyleneimine
  • Acetylcholinesterase