Background: It has been suggested that protein directly activated by cAMP (Epac), one of the downstream signaling molecules of β-adrenergic receptor (β-AR), may be an effective target for the treatment of arrhythmia. However, there have been no reports on the anti-arrhythmic effects or cardiac side-effects of Epac1 inhibitors in vivo.
Methods and results: In this study, the roles of Epac1 in the development of atrial and ventricular arrhythmias are examined. In addition, we examined the usefulness of CE3F4, an Epac1-selective inhibitor, in the treatment of the arrhythmias in mice. In Epac1 knockout (Epac1-KO) mice, the duration of atrial fibrillation (AF) was shorter than in wild-type mice. In calsequestrin2 knockout mice, Epac1 deficiency resulted in a reduction of ventricular arrhythmia. In both atrial and ventricular myocytes, sarcoplasmic reticulum (SR) Ca2+ leak, a major trigger of arrhythmias, and spontaneous SR Ca2+ release (SCR) were attenuated in Epac1-KO mice. Consistently, CE3F4 treatment significantly prevented AF and ventricular arrhythmia in mice. In addition, the SR Ca2+ leak and SCR were significantly inhibited by CE3F4 treatment in both atrial and ventricular myocytes. Importantly, cardiac function was not significantly affected by a dosage of CE3F4 sufficient to exert anti-arrhythmic effects.
Conclusions: These findings indicated that Epac1 is involved in the development of atrial and ventricular arrhythmias. CE3F4, an Epac1-selective inhibitor, prevented atrial and ventricular arrhythmias in mice.
Keywords: Arrhythmia; Atrial fibrillation; Epac; Sympathetic nervous system.