Genetics of Usher Syndrome: New Insights From a Meta-analysis

Otol Neurotol. 2019 Jan;40(1):121-129. doi: 10.1097/MAO.0000000000002054.


Objective: To describe the genetic and phenotypic spectrum of Usher syndrome after 6 years of studies by next-generation sequencing, and propose an up-to-date classification of Usher genes in patients with both visual and hearing impairments suggesting Usher syndrome, and in patients with seemingly isolated deafness.

Study design: The systematic review and meta-analysis protocol was based on Cochrane and Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. We performed 1) a meta-analysis of data from 11 next-generation sequencing studies in 684 patients with Usher syndrome; 2) a meta-analysis of data from 21 next-generation studies in 2,476 patients with seemingly isolated deafness, to assess the involvement of Usher genes in seemingly nonsyndromic hearing loss, and thus the proportion of patients at high risk of subsequent retinitis pigmentosa (RP); 3) a statistical analysis of differences between parts 1) and 2).

Results: In patients with both visual and hearing impairments, the biallelic disease-causing mutation rate was assessed for each Usher gene to propose a classification by frequency: USH2A: 50% (341/684) of patients, MYO7A: 21% (144/684), CDH23: 6% (39/684), ADGRV1: 5% (35/684), PCDH15: 3% (21/684), USH1C: 2% (17/684), CLRN1: 2% (14/684), USH1G: 1% (9/684), WHRN: 0.4% (3/684), PDZD7 0.1% (1/684), CIB2 (0/684). In patients with seemingly isolated sensorineural deafness, 7.5% had disease-causing mutations in Usher genes, and are therefore at high risk of developing RP. These new findings provide evidence that usherome dysfunction is the second cause of genetic sensorineural hearing loss after connexin dysfunction.

Conclusion: These results promote generalization of early molecular screening for Usher syndrome in deaf children.

Publication types

  • Meta-Analysis
  • Systematic Review

MeSH terms

  • High-Throughput Nucleotide Sequencing / methods
  • Humans
  • Mutation*
  • Pedigree
  • Usher Syndromes / genetics*