Dimensionality reduction for visualizing single-cell data using UMAP
- PMID: 30531897
- DOI: 10.1038/nbt.4314
Dimensionality reduction for visualizing single-cell data using UMAP
Abstract
Advances in single-cell technologies have enabled high-resolution dissection of tissue composition. Several tools for dimensionality reduction are available to analyze the large number of parameters generated in single-cell studies. Recently, a nonlinear dimensionality-reduction technique, uniform manifold approximation and projection (UMAP), was developed for the analysis of any type of high-dimensional data. Here we apply it to biological data, using three well-characterized mass cytometry and single-cell RNA sequencing datasets. Comparing the performance of UMAP with five other tools, we find that UMAP provides the fastest run times, highest reproducibility and the most meaningful organization of cell clusters. The work highlights the use of UMAP for improved visualization and interpretation of single-cell data.
Comment in
-
Initialization is critical for preserving global data structure in both t-SNE and UMAP.Nat Biotechnol. 2021 Feb;39(2):156-157. doi: 10.1038/s41587-020-00809-z. Epub 2021 Feb 1. Nat Biotechnol. 2021. PMID: 33526945 No abstract available.
Similar articles
-
Dimensionality reduction by UMAP for visualizing and aiding in classification of imaging flow cytometry data.iScience. 2022 Sep 15;25(10):105142. doi: 10.1016/j.isci.2022.105142. eCollection 2022 Oct 21. iScience. 2022. PMID: 36193047 Free PMC article.
-
Uniform Manifold Approximation and Projection (UMAP) Reveals Composite Patterns and Resolves Visualization Artifacts in Microbiome Data.mSystems. 2021 Oct 26;6(5):e0069121. doi: 10.1128/mSystems.00691-21. Epub 2021 Oct 5. mSystems. 2021. PMID: 34609167 Free PMC article.
-
Dimensionality reduction by UMAP reinforces sample heterogeneity analysis in bulk transcriptomic data.Cell Rep. 2021 Jul 27;36(4):109442. doi: 10.1016/j.celrep.2021.109442. Cell Rep. 2021. PMID: 34320340
-
A review of UMAP in population genetics.J Hum Genet. 2021 Jan;66(1):85-91. doi: 10.1038/s10038-020-00851-4. Epub 2020 Oct 14. J Hum Genet. 2021. PMID: 33057159 Free PMC article. Review.
-
Computational solutions for spatial transcriptomics.Comput Struct Biotechnol J. 2022 Sep 1;20:4870-4884. doi: 10.1016/j.csbj.2022.08.043. eCollection 2022. Comput Struct Biotechnol J. 2022. PMID: 36147664 Free PMC article. Review.
Cited by
-
Assessing personalized molecular portraits underlying endothelial-to-mesenchymal transition within pulmonary arterial hypertension.Mol Med. 2024 Oct 26;30(1):189. doi: 10.1186/s10020-024-00963-z. Mol Med. 2024. PMID: 39462326 Free PMC article.
-
Single-cell RNA sequencing of human liver reveals hepatic stellate cell heterogeneity.JHEP Rep. 2021 Mar 21;3(3):100278. doi: 10.1016/j.jhepr.2021.100278. eCollection 2021 Jun. JHEP Rep. 2021. PMID: 34027339 Free PMC article.
-
Hexokinase 2 discerns a novel circulating tumor cell population associated with poor prognosis in lung cancer patients.Proc Natl Acad Sci U S A. 2021 Mar 16;118(11):e2012228118. doi: 10.1073/pnas.2012228118. Proc Natl Acad Sci U S A. 2021. PMID: 33836566 Free PMC article.
-
Enhancing droplet-based single-nucleus RNA-seq resolution using the semi-supervised machine learning classifier DIEM.Sci Rep. 2020 Jul 3;10(1):11019. doi: 10.1038/s41598-020-67513-5. Sci Rep. 2020. PMID: 32620816 Free PMC article.
-
Shape-aware stochastic neighbor embedding for robust data visualisations.BMC Bioinformatics. 2022 Nov 14;23(1):477. doi: 10.1186/s12859-022-05028-8. BMC Bioinformatics. 2022. PMID: 36376789 Free PMC article.
References
LinkOut - more resources
Full Text Sources
Other Literature Sources
