Nutritional quality modulates trait variability

Front Zool. 2018 Dec 5:15:50. doi: 10.1186/s12983-018-0297-2. eCollection 2018.

Abstract

Background: Trait based functional and community ecology is en vogue. Most studies, however, ignore phenotypical diversity by characterizing entire species considering only trait means rather than their variability. Phenotypical variability may arise from genotypical differences or from ecological factors (e.g., nutritionally imbalanced diet), and these causes can usually not be separated in natural populations. We used a single genotype from a parthenogenetic model system (the oribatid mite Archegozetes longisetosus Aoki) to exclude genotypical differences. We investigated patterns of dietary (10 different food treatments) induced trait variation by measuring the response of nine different traits (relating to life history, morphology or exocrine gland chemistry).

Results: Nutritional quality (approximated by carbon-to-nitrogen ratios) influenced all trait means and their variation. Some traits were more prone to variation than others. Furthermore, the "threshold elemental ratio"- rule of element stoichiometry applied to phenotypic trait variation. Imbalanced food (i.e. food not able to fully meet the nutritional demands of an animal) led to lower trait mean values, but also to a higher variation of traits.

Conclusion: Imbalanced food led not only to lower trait value averages, but also to higher trait variability. There was a negative relationship between both parameters, indicating a direct link of both, average trait levels and trait variation to nutritional quality. Hence, variation of trait means may be a predictor for general food quality, and further indicate trade-offs in specific traits an animal must deal with while feeding on imbalanced diets.

Keywords: Archegozetes longisetosus; Functional traits; Nutritional balance; Nutritional ecology; Oribatid mites; Parthenogenesis; Threshold elemental ratio; Trait plasticity.