Procaspase activating compound 1 controls tetracycline repressor-regulated gene expression system

Biosci Rep. 2019 Jan 8;39(1):BSR20180793. doi: 10.1042/BSR20180793. Print 2019 Jan 31.

Abstract

The tetracycline repressor (TetR)-regulated system is a widely used tool to study gene functions through control of its expression. Various effectors such as tetracycline (Tc) and doxycycline (Dox) quickly induce or shut down gene expression, but reversing gene expression has not been eligible due to long half-lives of such effectors. Here, we found that procaspase activating compound 1 (PAC-1) rapidly reduces transient expression of TetR-regulated green fluorescent protein (GFP) in mammalian cells. Next, we applied PAC-1 to control of expression of transient receptor potential melastatin 7 (TRPM7) protein, whose downstream cellular events can be monitored by cell morphological changes. We observed that PAC-1 quickly reduces TRPM7 expression, consequently affecting cell morphology regulated by TRPM7. The present study demonstrates the first small molecule that efficiently turns off the TetR-regulated gene expression in mammalian cells, thereby precisely regulating the expression level of target gene.

Keywords: PAC-1; TetR-regulated system; antagonist; anti-induction; gene regulation; tetracycline repressor.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Gene Expression / drug effects
  • Gene Expression / genetics
  • Gene Expression Regulation / drug effects*
  • Gene Expression Regulation / genetics
  • Green Fluorescent Proteins / genetics
  • HEK293 Cells
  • Humans
  • Hydrazones / pharmacology*
  • Piperazines / pharmacology*
  • Repressor Proteins / genetics*
  • TRPM Cation Channels / genetics
  • Tetracycline / pharmacology*

Substances

  • (4-benzylpiperazin-1-yl)acetic acid (3-allyl-2-hydroxybenzylidene)hydrazine
  • Hydrazones
  • Piperazines
  • Repressor Proteins
  • TRPM Cation Channels
  • Green Fluorescent Proteins
  • Tetracycline