Characterization of the torsional structural properties of feline femurs and surrogate bone models for mechanical testing of orthopedic implants

Vet Surg. 2019 Feb;48(2):229-236. doi: 10.1111/vsu.13136. Epub 2018 Dec 13.

Abstract

Objective: To characterize the torsional structural properties of the feline femur and design a bone model surrogate for mechanical testing of feline orthopedic implants.

Study design: Experimental.

Sample population: Paired feline femurs (n = 30) and bone models (8 materials, n = 4/group).

Methods: Femurs were cyclically tested nondestructively in torsion and then loaded to failure. A generic femoral model was then designed from native femur dimensions and tested similarly by using 1 of 8 materials that were 3-dimensionally printed or machined. Outcome measures consisting of torsional compliance, angular deformation (AD), and torque to failure were compared by using Student's t test (P < .05). Failure modes are reported as descriptive statistics.

Results: Torsional compliance (1.6 ± 0.3°/Nm, 2.0 ± 0.1°/Nm), AD (3.1 ± 0.6°, 3.8 ± 0.2°) and torque to failure (7.8 ±1.2 Nm, 8.1 ± 1.3 Nm) did not differ between feline femurs and short-fiber epoxy (SFE) models. Conversely, most printed materials displayed excessive TC and failed by plastic deformation (AD > 15-fold that of native femurs) rather than by fracture. Feline bone and SFE both failed by spiral fractures.

Conclusion: None of the outcome measures differed between the 4th generation SFE model and cadaveric femurs, but differences were identified between feline bone and printed materials.

Clinical impact: Machined SFE can be used to create a surrogate bone model with torsional structural properties similar to those of feline femurs. In contrast, common printable materials appear unsuitable to produce a realistic feline bone surrogate.

MeSH terms

  • Animals
  • Biomechanical Phenomena
  • Bone and Bones / physiology*
  • Cats*
  • Femur / physiology*
  • Implants, Experimental / veterinary*
  • Materials Testing / veterinary*
  • Prostheses and Implants / veterinary*
  • Torque