Synthesis, photodynamic activities, and cytotoxicity of new water-soluble cationic gallium(III) and zinc(II) phthalocyanines

J Inorg Biochem. 2019 Mar:192:7-16. doi: 10.1016/j.jinorgbio.2018.11.013. Epub 2018 Dec 5.

Abstract

The cationic Ga(III) and Zn(II) phthalocyanines carrying N-methyl-pyridinium groups at eight peripheral β-positionshave been synthesized. These complexes are highly soluble in dimethyl sulfoxide (DMSO) and moderately soluble in water and phosphate buffered saline (PBS); both Ga(III)Cl and Zn(II) complexes have shown no aggregation in water up to 1.2 × 10-4 and 1.5 × 10-5 M, respectively. A higher water-solubility of Ga(III)Cl complex as compared to Zn(II) complex is ascribed to the presence of an axially coordinated chloride. The spectroscopic properties, photogeneration of singlet oxygen (1O2), and cytotoxicity of these complexes have been investigated. The absolute quantum yields (ΦΔabsolute) for the photogeneration of singlet oxygen using Ga(III)Cl and Zn(II) complexes have been determined to be 4.4 and 5.3%, respectively, in DMSO solution. The cytotoxicity and intracellular sites of localization of Ga(III)Cl and Zn(II) complexes have been evaluated in human HEp2 cells. Both complexes, localized intracellularly in multiple organelles, have shown no cytotoxicity in the dark. Upon exposure to a low light dose (1.5 J/cm2), however, Zn(II) complex has exhibited a high photocytotoxicity. The result suggests that Zn(II) complex can be considered as a potential photosensitizer for Photodynamic therapy (PDT).

Keywords: PDT; Phthelocyanine; Singlet oxygen; Water-soluble.

MeSH terms

  • Cell Line
  • Gallium* / chemistry
  • Gallium* / pharmacokinetics
  • Gallium* / pharmacology
  • Humans
  • Indoles* / chemical synthesis
  • Indoles* / chemistry
  • Indoles* / pharmacokinetics
  • Indoles* / pharmacology
  • Isoindoles
  • Photochemotherapy*
  • Photosensitizing Agents* / chemical synthesis
  • Photosensitizing Agents* / chemistry
  • Photosensitizing Agents* / pharmacokinetics
  • Photosensitizing Agents* / pharmacology
  • Solubility
  • Zinc* / chemistry
  • Zinc* / pharmacokinetics
  • Zinc* / pharmacology

Substances

  • Indoles
  • Isoindoles
  • Photosensitizing Agents
  • Gallium
  • Zinc
  • phthalocyanine