U-Net: deep learning for cell counting, detection, and morphometry
- PMID: 30559429
- DOI: 10.1038/s41592-018-0261-2
U-Net: deep learning for cell counting, detection, and morphometry
Erratum in
-
Author Correction: U-Net: deep learning for cell counting, detection, and morphometry.Nat Methods. 2019 Apr;16(4):351. doi: 10.1038/s41592-019-0356-4. Nat Methods. 2019. PMID: 30804552
Abstract
U-Net is a generic deep-learning solution for frequently occurring quantification tasks such as cell detection and shape measurements in biomedical image data. We present an ImageJ plugin that enables non-machine-learning experts to analyze their data with U-Net on either a local computer or a remote server/cloud service. The plugin comes with pretrained models for single-cell segmentation and allows for U-Net to be adapted to new tasks on the basis of a few annotated samples.
Similar articles
-
MIScnn: a framework for medical image segmentation with convolutional neural networks and deep learning.BMC Med Imaging. 2021 Jan 18;21(1):12. doi: 10.1186/s12880-020-00543-7. BMC Med Imaging. 2021. PMID: 33461500 Free PMC article.
-
Deep-Hook: A trusted deep learning-based framework for unknown malware detection and classification in Linux cloud environments.Neural Netw. 2021 Dec;144:648-685. doi: 10.1016/j.neunet.2021.09.019. Epub 2021 Oct 2. Neural Netw. 2021. PMID: 34656885
-
CDeep3M-Plug-and-Play cloud-based deep learning for image segmentation.Nat Methods. 2018 Sep;15(9):677-680. doi: 10.1038/s41592-018-0106-z. Epub 2018 Aug 31. Nat Methods. 2018. PMID: 30171236 Free PMC article.
-
Breast Cancer Segmentation Methods: Current Status and Future Potentials.Biomed Res Int. 2021 Jul 20;2021:9962109. doi: 10.1155/2021/9962109. eCollection 2021. Biomed Res Int. 2021. PMID: 34337066 Free PMC article. Review.
-
Deep learning approaches for neural decoding across architectures and recording modalities.Brief Bioinform. 2021 Mar 22;22(2):1577-1591. doi: 10.1093/bib/bbaa355. Brief Bioinform. 2021. PMID: 33372958 Review.
Cited by
-
Medical image analysis based on deep learning approach.Multimed Tools Appl. 2021;80(16):24365-24398. doi: 10.1007/s11042-021-10707-4. Epub 2021 Apr 6. Multimed Tools Appl. 2021. PMID: 33841033 Free PMC article.
-
Cellular senescence-mediated exacerbation of Duchenne muscular dystrophy.Sci Rep. 2020 Oct 12;10(1):16385. doi: 10.1038/s41598-020-73315-6. Sci Rep. 2020. PMID: 33046751 Free PMC article.
-
Noise learning of instruments for high-contrast, high-resolution and fast hyperspectral microscopy and nanoscopy.Nat Commun. 2024 Jan 25;15(1):754. doi: 10.1038/s41467-024-44864-5. Nat Commun. 2024. PMID: 38272927 Free PMC article.
-
Personalized Deep Learning Model for Clinical Target Volume on Daily Cone Beam Computed Tomography in Breast Cancer Patients.Adv Radiat Oncol. 2024 Jul 26;9(10):101580. doi: 10.1016/j.adro.2024.101580. eCollection 2024 Oct. Adv Radiat Oncol. 2024. PMID: 39258144 Free PMC article.
-
Development of a deep learning based image processing tool for enhanced organoid analysis.Sci Rep. 2023 Nov 13;13(1):19841. doi: 10.1038/s41598-023-46485-2. Sci Rep. 2023. PMID: 37963925 Free PMC article.
References
-
- Sommer, C, Strähle, C, Koethe, U. & Hamprecht, F. A. in Ilastik: interactive learning and segmentation toolkit in IEEE Int. Symp. Biomed. Imaging. 230–233 (IEEE: Piscataway, NJ, USA, 2011).
-
- Arganda-Carreras, I. et al. Bioinformatics 33, 2424–2426 (2017). - DOI
-
- Ronneberger, O., Fischer, P. & Brox, T. U-Net: convolutional networks for biomedical image segmentation. in Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015 Vol. 9351, 234–241 (Springer, Cham, Switzerland, 2015).
-
- Rusk, N. Nat. Methods 13, 35 (2016). - DOI
-
- Webb, S. Nature 554, 555–557 (2018). - DOI
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
