Comparing directed functional connectivity between groups with confirmatory subgrouping GIMME

Neuroimage. 2019 Mar:188:642-653. doi: 10.1016/j.neuroimage.2018.12.040. Epub 2018 Dec 21.

Abstract

Connectivity modeling in functional neuroimaging has become widely used method of analysis for understanding functional architecture. One method for deriving directed connectivity models is Group Iterative Multiple Model Estimation (GIMME; Gates and Molenaar, 2012). GIMME looks for commonalities across the sample to detect signal from noise and arrive at edges that exist across the majority in the group ("group-level edges") and individual-level edges. In this way, GIMME obtains generalizable results via the group-level edges while also allowing for between subject heterogeneity in connectivity, moving the field closer to obtaining reliable personalized connectivity maps. In this article, we present a novel extension of GIMME, confirmatory subgrouping GIMME, which estimates subgroup-level edges for a priori known groups (e.g. typically developing controls vs. clinical group). Detecting edges that consistently exist for individuals within predefined subgroups aids in interpretation of the heterogeneity in connectivity maps and allows for subgroup-specific inferences. We describe this algorithm, as well as several methods to examine the results. We present an empirical example that finds similarities and differences in resting state functional connectivity among four groups of children: typically developing controls (TDC), children with autism spectrum disorder (ASD), children with Inattentive (ADHD-I) and Combined (ADHD-C) Type ADHD. Findings from this study suggest common involvement of the left Broca's area in all the clinical groups, as well as several unique patterns of functional connectivity specific to a given disorder. Overall, the current approach and proof of principle findings highlight a novel and reliable tool for capturing heterogeneity in complex mental health disorders.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural

MeSH terms

  • Adolescent
  • Attention Deficit Disorder with Hyperactivity / diagnostic imaging
  • Attention Deficit Disorder with Hyperactivity / physiopathology*
  • Autism Spectrum Disorder / diagnostic imaging
  • Autism Spectrum Disorder / physiopathology*
  • Broca Area / diagnostic imaging
  • Broca Area / physiopathology
  • Cerebral Cortex / diagnostic imaging
  • Cerebral Cortex / physiology*
  • Cerebral Cortex / physiopathology
  • Child
  • Child Development / physiology*
  • Connectome / methods*
  • Female
  • Humans
  • Magnetic Resonance Imaging
  • Male
  • Models, Theoretical*
  • Nerve Net / diagnostic imaging
  • Nerve Net / physiology*
  • Nerve Net / physiopathology