Death receptor 5 is activated by fucosylation in colon cancer cells

FEBS J. 2019 Feb;286(3):555-571. doi: 10.1111/febs.14742. Epub 2019 Jan 14.


The remarkable pro-apoptotic properties of tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) have led to considerable interest in this protein as a potential anticancer therapeutic. However, TRAIL is largely ineffective in inducing apoptosis in certain cancer cells, and the mechanisms underlying this selectivity are unknown. In colon adenocarcinomas, posttranslational modifications including O- and N- glycosylation of death receptors were found to correlate with TRAIL-induced apoptosis. Additionally, mRNA levels of fucosyltransferase 3 (FUT3) and 6 (FUT6) were found to be high in the TRAIL-sensitive colon adenocarcinoma cell line COLO 205. In this study, we use agonistic receptor-specific TRAIL variants to dissect the contribution of FUT3 and FUT6-mediated fucosylation to TRAIL-induced apoptosis via its two death receptors, DR4 and DR5. Triggering of apoptosis by TRAIL revealed that the low FUT3/6-expressing cells DLD-1 and HCT 116 are insensitive to DR5 but not to DR4-mediated apoptosis. By contrast, efficient apoptosis is mediated via both receptors in high FUT3/6-expressing COLO 205 cells. The reconstitution of FUT3/6 expression in DR5-resistant cells completely restored TRAIL sensitivity via this receptor, while only marginally enhancing apoptosis via DR4 at lower TRAIL concentrations. Interestingly, we observed that induction of the salvage pathway by external administration of l-fucose restores DR5-mediated apoptosis in both DLD-1 and HCT 116 cells. Finally, we show that fucosylation influences the ligand-independent receptor association that leads to increased death inducing signalling complex (DISC) formation and caspase-8 activation. Taken together, these results provide evidence for the differential impact of fucosylation on signalling via DR4 or DR5. These findings provide novel opportunities to enhance TRAIL sensitivity in colon adenocarcinoma cells that are highly resistant to DR5-mediated apoptosis.

Keywords: TNF-related apoptosis-inducing ligand; death receptor 5; fucosylation; glycosylation; receptor clustering.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Apoptosis / drug effects
  • Apoptosis / genetics
  • Cell Line, Tumor
  • Drug Resistance, Neoplasm / genetics
  • Fucose / metabolism
  • Fucosyltransferases / genetics
  • Fucosyltransferases / metabolism*
  • Gene Expression Regulation, Neoplastic*
  • Glycosylation
  • HCT116 Cells
  • Humans
  • Organ Specificity
  • Protein Processing, Post-Translational*
  • Receptors, TNF-Related Apoptosis-Inducing Ligand / genetics
  • Receptors, TNF-Related Apoptosis-Inducing Ligand / metabolism*
  • Signal Transduction
  • TNF-Related Apoptosis-Inducing Ligand / genetics
  • TNF-Related Apoptosis-Inducing Ligand / metabolism
  • TNF-Related Apoptosis-Inducing Ligand / pharmacology*


  • Receptors, TNF-Related Apoptosis-Inducing Ligand
  • TNF-Related Apoptosis-Inducing Ligand
  • TNFRSF10A protein, human
  • TNFRSF10B protein, human
  • TNFSF10 protein, human
  • Fucose
  • Fucosyltransferases
  • 3-galactosyl-N-acetylglucosaminide 4-alpha-L-fucosyltransferase
  • FUT6 protein, human