TFS and Spt4/5 accelerate transcription through archaeal histone-based chromatin
- PMID: 30592095
- PMCID: PMC6417941
- DOI: 10.1111/mmi.14191
TFS and Spt4/5 accelerate transcription through archaeal histone-based chromatin
Abstract
RNA polymerase must surmount translocation barriers for continued transcription. In Eukarya and most Archaea, DNA-bound histone proteins represent the most common and troublesome barrier to transcription elongation. Eukaryotes encode a plethora of chromatin-remodeling complexes, histone-modification enzymes and transcription elongation factors to aid transcription through nucleosomes, while archaea seemingly lack machinery to remodel/modify histone-based chromatin and thus must rely on elongation factors to accelerate transcription through chromatin-barriers. TFS (TFIIS in Eukarya) and the Spt4-Spt5 complex are universally encoded in archaeal genomes, and here we demonstrate that both elongation factors, via different mechanisms, can accelerate transcription through archaeal histone-based chromatin. Histone proteins in Thermococcus kodakarensis are sufficiently abundant to completely wrap all genomic DNA, resulting in a consistent protein barrier to transcription elongation. TFS-enhanced cleavage of RNAs in backtracked transcription complexes reactivates stalled RNAPs and dramatically accelerates transcription through histone-barriers, while Spt4-Spt5 changes to clamp-domain dynamics play a lesser-role in stabilizing transcription. Repeated attempts to delete TFS, Spt4 and Spt5 from the T. kodakarensis genome were not successful, and the essentiality of both conserved transcription elongation factors suggests that both conserved elongation factors play important roles in transcription regulation in vivo, including mechanisms to accelerate transcription through downstream protein barriers.
© 2018 John Wiley & Sons Ltd.
Figures
Similar articles
-
Structural basis of archaeal RNA polymerase transcription elongation and Spt4/5 recruitment.Nucleic Acids Res. 2024 Jun 10;52(10):6017-6035. doi: 10.1093/nar/gkae282. Nucleic Acids Res. 2024. PMID: 38709902 Free PMC article.
-
Histone H3K4 and K36 methylation, Chd1 and Rpd3S oppose the functions of Saccharomyces cerevisiae Spt4-Spt5 in transcription.Genetics. 2010 Feb;184(2):321-34. doi: 10.1534/genetics.109.111526. Epub 2009 Nov 30. Genetics. 2010. PMID: 19948887 Free PMC article.
-
Core structure of the yeast spt4-spt5 complex: a conserved module for regulation of transcription elongation.Structure. 2008 Nov 12;16(11):1649-58. doi: 10.1016/j.str.2008.08.013. Structure. 2008. PMID: 19000817 Free PMC article.
-
The Spt4-Spt5 complex: a multi-faceted regulator of transcription elongation.Biochim Biophys Acta. 2013 Jan;1829(1):105-15. doi: 10.1016/j.bbagrm.2012.08.007. Epub 2012 Sep 6. Biochim Biophys Acta. 2013. PMID: 22982195 Free PMC article. Review.
-
Mechanisms of Transcription Elongation Factor DSIF (Spt4-Spt5).J Mol Biol. 2021 Jul 9;433(14):166657. doi: 10.1016/j.jmb.2020.09.016. Epub 2020 Sep 25. J Mol Biol. 2021. PMID: 32987031 Review.
Cited by
-
The structure and activities of the archaeal transcription termination factor Eta detail vulnerabilities of the transcription elongation complex.Proc Natl Acad Sci U S A. 2022 Aug 9;119(32):e2207581119. doi: 10.1073/pnas.2207581119. Epub 2022 Aug 2. Proc Natl Acad Sci U S A. 2022. PMID: 35917344 Free PMC article.
-
The pleiotropic roles of SPT5 in transcription.Transcription. 2022 Feb-Jun;13(1-3):53-69. doi: 10.1080/21541264.2022.2103366. Epub 2022 Jul 25. Transcription. 2022. PMID: 35876486 Free PMC article. Review.
-
RNA polymerase pausing, stalling and bypass during transcription of damaged DNA: from molecular basis to functional consequences.Nucleic Acids Res. 2022 Apr 8;50(6):3018-3041. doi: 10.1093/nar/gkac174. Nucleic Acids Res. 2022. PMID: 35323981 Free PMC article. Review.
-
Mechanical and structural properties of archaeal hypernucleosomes.Nucleic Acids Res. 2021 May 7;49(8):4338-4349. doi: 10.1093/nar/gkaa1196. Nucleic Acids Res. 2021. PMID: 33341892 Free PMC article.
-
FttA is a CPSF73 homologue that terminates transcription in Archaea.Nat Microbiol. 2020 Apr;5(4):545-553. doi: 10.1038/s41564-020-0667-3. Epub 2020 Feb 24. Nat Microbiol. 2020. PMID: 32094586 Free PMC article.
References
-
- Bailey KA, Pereira SL, Widom J, and Reeve JN (2000) Archaeal histone selection of nucleosome positioning sequences and the procaryotic origin of histone-dependent genome evolution. J Mol Biol 303: 25–34. - PubMed
-
- Bernecky C, Plitzko JM, and Cramer P (2017) Structure of a transcribing RNA polymerase II–DSIF complex reveals a multidentate DNA–RNA clamp. Nat Struct Mol Biol 24: 809–815. - PubMed
-
- Bhattacharyya S, Mattiroli F, and Luger K (2018) Archaeal DNA on the histone merry-go-round. FEBS J 285: 3168–3174. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
