Hepatitis E virus (HEV) is an enteric virus divided into eight genotypes. Genotype 1 (G1) and G2 are specific to humans; G3, G4 and G7 are zoonotic genotypes infecting humans and animals. Transmission to humans through water has been demonstrated for G1 and G2, mainly in developing countries, but is only suspected for the zoonotic genotypes. Thus, the water-related HEV hazard may be due to human and animal faeces. The high HEV genetic variability allows considering the presence in wastewater of not only different genotypes, but also quasispecies adding even greater diversity. Moreover, recent studies have demonstrated that HEV particles may be either quasi-enveloped or non-enveloped, potentially implying differential viral behaviours in the environment. The presence of HEV has been demonstrated at the different stages of the water cycle all over the world, especially for HEV G3 in Europe and the USA. Concerning HEV survival in water, the virus does not have higher resistance to inactivating factors (heat, UV, chlorine, physical removal), compared to viral indicators (MS2 phage) or other highly resistant enteric viruses (Hepatitis A virus). But the studies did not take into account genetic (genogroups, quasispecies) or structural (quasi- or non-enveloped forms) HEV variability. Viral variability could indeed modify HEV persistence in water by influencing its interaction with the environment, its infectivity and its pathogenicity, and subsequently its transmission by water. The cell culture methods used to study HEV survival still have drawbacks (challenging virus cultivation, time consuming, lack of sensitivity). As explained in the present review, the issue of HEV transmission to humans through water is similar to that of other enteric viruses because of their similar or lower survival. HEV transmission to animals through water and how the virus variability affects its survival and transmission remain to be investigated.
Keywords: Hepatitis E virus (HEV); Occurrence; Survival; Transmission; Variability; Water.
Copyright © 2018 Elsevier Ltd. All rights reserved.