Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Apr 1:126:765-775.
doi: 10.1016/j.ijbiomac.2018.12.258. Epub 2018 Dec 28.

Release of ciprofloxacin drugs by nano gold embedded cellulose grafted polyacrylamide hybrid nanocomposite hydrogels

Affiliations

Release of ciprofloxacin drugs by nano gold embedded cellulose grafted polyacrylamide hybrid nanocomposite hydrogels

Kalyani Prusty et al. Int J Biol Macromol. .

Abstract

The present work involves the designing of the porous nano gold embedded cellulose grafted polyacrylamide (PAM/C/Au) nanocomposite hydrogel which has been prepared by in situ polymerization process with an objective of application for the in vitro release of ciprofloxacin drugs. The structure, composition, morphology behaviour of the nanocomposite hydrogels are explored using Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction study (XRD), X-ray photoelectron spectroscopy (XPS); field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and atomic force microscopy (AFM). The thermal stability of the as synthesized nanocomposite hydrogels are studied by TGA. The gelling actions of prepared nanocomposite hydrogels are determined by the rheological study. The investigations of cytotoxicity tests and antibacterial behaviour along with negative and positive actions of nanocomposite hydrogels are investigated. The study of the release rate of ciprofloxacin drugs is carried out by measuring water retention and swelling properties of nanocomposite hydrogels. The in vitro release rate of ciprofloxacin antibiotic drug is found to be 96.6% in 5 h. The PAM/C/Au nanocomposite hydrogels with improved thermal and rheological properties are suitable proposed as a good carrier towards in vitro release of the ciprofloxacin drugs.

Keywords: Au NPs; Ciprofloxacin; In vitro; Nanocomposites hydrogels; Rheology.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources