Background: Donor nerve myelinated axon counts correlate with functional outcomes in reanimation procedures; however, there exists no reliable means for their intraoperative quantification. In this article, the authors report a novel protocol for rapid quantification of myelinated axons from frozen sections, and demonstrate its applicability to surgical practice.
Methods: The impact of various fixation and FluoroMyelin Red staining strategies on resolved myelin sheath morphology from cryosections of rat and rabbit femoral and sciatic nerves was assessed. A protocol comprising fresh cryosection and rapid staining was developed, and histomorphometric results were compared against conventional osmium-postfixed, resin-embedded, toluidine blue-stained sections of rat sciatic nerve. The rapid protocol was applied for intraoperative quantification of donor nerve myelinated axon count in a cross-facial nerve grafting procedure.
Results: Resolution of myelinated axon morphology suitable for counting was realized within 10 minutes of tissue harvest. Although mean myelinated axon diameter appeared larger using the rapid fresh-frozen as compared to conventional nerve processing techniques (mean ± SD; rapid, 9.25 ± 0.62 μm; conventional, 6.05 ± 0.71 μm; p < 0.001), no difference in axon counts was observed on high-power fields (rapid, 429.42 ± 49.32; conventional, 460.32 ± 69.96; p = 0.277). Whole nerve myelinated axon counts using the rapid protocol herein (8435.12 ± 1329.72) were similar to prior reports using conventional osmium processing of rat sciatic nerve.
Conclusions: A rapid protocol for quantification of myelinated axon counts from peripheral nerves using widely available equipment and techniques has been described, rendering possible intraoperative assessment of donor nerve suitability for reanimation.