Growth of Spherical Gold Satellites on the Surface of Au@Ag@SiO2 Core-Shell Nanostructures Used for an Ultrasensitive SERS Immunoassay of Alpha-Fetoprotein

ACS Appl Mater Interfaces. 2019 Jan 23;11(3):3617-3626. doi: 10.1021/acsami.8b21238. Epub 2019 Jan 11.

Abstract

The identification and detection of cancer biomarkers in early stages is an important issue for the therapy of cancer. However, most methods are time-consuming and have limited sensing sensitivity and specificity. In this work, we prepared a novel plasmonic multilayered core-shell-satellite nanostructure (Au@Ag@SiO2-AuNP) consisting of a gold nanosphere with a silver coating core (Au@Ag), an ultrathin continuous silica (SiO2) shell, and a high coverage of gold nanosphere (AuNP) satellites. The Au@Ag core is a prominent surface enhanced Raman scattering (SERS) platform, and the thin SiO2 layer exhibits a long-range plasmon coupling between the Au@Ag core to the AuNP satellites, further leading to enhanced Raman scattering. Meanwhile, the outer AuNP satellites have a high biocompatibility and long-term stability. Combining the above advantages, the well-designed metallic nanoassemblies would be a promising candidate for SERS-based applications in biochemistry. For specific detection of alpha-fetoprotein (AFP), we utilized the SERS-active core-shell-satellite nanostructures modified with AFP antibody as immune probes and nitrocellulose membrane (NC) stabilized captured anti-AFP antibodies as solid substrate. To improve the detection performance, we further systematically optimized the parameters, including the silver coating thickness of the Au@Ag core and the density and size of the satellite AuNPs. Under the optimized conditions, AFP could be detected by the SERS-based sandwich immunoassay with an ultralow detection limit of 0.3 fg/mL, and the method exhibited a wide linear response from 1 fg/mL to 1 ng/mL. The limit of detection (LOD) was considerably lower than conventional methods in the literature. This work relies on the unique Au@Ag@SiO2-AuNP nanostructures as the immune probe develops a new outlook for the application of multilayered nanoassemblies and demonstrates the great potential in early tumor marker detection.

Keywords: Au−Ag bimetallic nanospheres; alpha-fetoprotein; core−shell−satellite nanostructure; gold nanospheres; surface enhanced Raman scattering (SERS).

MeSH terms

  • Biosensing Techniques*
  • Gold
  • Humans
  • Immunoassay / methods*
  • Limit of Detection
  • Metal Nanoparticles / chemistry*
  • Nanospheres / chemistry
  • Nanostructures / chemistry
  • Silicon Dioxide / chemistry
  • Silver / chemistry
  • Sulfhydryl Compounds / chemistry
  • alpha-Fetoproteins / chemistry
  • alpha-Fetoproteins / isolation & purification*

Substances

  • Sulfhydryl Compounds
  • alpha-Fetoproteins
  • Silver
  • Gold
  • Silicon Dioxide