Methods Enzymol. 2019:614:321-362. doi: 10.1016/bs.mie.2018.07.005. Epub 2018 Sep 11.


Chemical Shift-Rosetta (CS-Rosetta) is an automated method that employs NMR chemical shifts to model protein structures de novo. In this chapter, we introduce the terminology and central concepts of CS-Rosetta. We describe the architecture and functionality of automatic NOESY assignment (AutoNOE) and structure determination protocols (Abrelax and RASREC) within the CS-Rosetta framework. We further demonstrate how CS-Rosetta can discriminate near-native structures against a large conformational search space using restraints obtained from NMR data, and/or sequence and structure homology. We highlight how CS-Rosetta can be combined with alternative automated approaches to (i) model oligomeric systems and (ii) create NMR-based structure determination pipeline. To show its practical applicability, we emphasize on the computational requirements and performance of CS-Rosetta for protein targets of varying molecular weight and complexity. Finally, we discuss the current Python interface, which enables easy execution of protocols for rapid and accurate high-resolution structure determination.

Keywords: Abrelax; CS-Rosetta; NMR structure determination; NOE assignment; RASREC.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, N.I.H., Intramural

MeSH terms

  • Algorithms*
  • Binding Sites
  • Humans
  • Magnetic Resonance Imaging / statistics & numerical data*
  • Models, Molecular
  • Molecular Weight
  • Protein Binding
  • Protein Conformation, alpha-Helical
  • Protein Conformation, beta-Strand
  • Protein Folding
  • Protein Interaction Domains and Motifs
  • Proteins / chemistry*
  • Software*
  • Structural Homology, Protein
  • Thermodynamics


  • Proteins