A Self-Deleting AAV-CRISPR System for In Vivo Genome Editing

Mol Ther Methods Clin Dev. 2018 Dec 6;12:111-122. doi: 10.1016/j.omtm.2018.11.009. eCollection 2019 Mar 15.


Adeno-associated viral (AAV) vectors packaging the CRISPR-Cas9 system (AAV-CRISPR) can efficiently modify disease-relevant genes in somatic tissues with high efficiency. AAV vectors are a preferred delivery vehicle for tissue-directed gene therapy because of their ability to achieve sustained expression from largely non-integrating episomal genomes. However, for genome editizng applications, permanent expression of non-human proteins such as the bacterially derived Cas9 nuclease is undesirable. Methods are needed to achieve efficient genome editing in vivo, with controlled transient expression of CRISPR-Cas9. Here, we report a self-deleting AAV-CRISPR system that introduces insertion and deletion mutations into AAV episomes. We demonstrate that this system dramatically reduces the level of Staphylococcus aureus Cas9 protein, often greater than 79%, while achieving high rates of on-target editing in the liver. Off-target mutagenesis was not observed for the self-deleting Cas9 guide RNA at any of the predicted potential off-target sites examined. This system is efficient and versatile, as demonstrated by robust knockdown of liver-expressed proteins in vivo. This self-deleting AAV-CRISPR system is an important proof of concept that will help enable translation of liver-directed genome editing in humans.

Keywords: AAV; AAV-CRISPR; CRISPR/Cas9; adeno-associated virus; gene therapy; in vivo delivery; liver; self-deleting; somatic genome editing.