Investigations into Ti-15Mo-W Alloys Developed for Medical Applications

Materials (Basel). 2019 Jan 4;12(1):147. doi: 10.3390/ma12010147.

Abstract

The β-Ti alloys have attracted the attention of researchers due to their excellent properties and their remarkable biocompatibility. The present study evaluated the mechanical behavior analysis (hardness, compressive strength, and modulus of elasticity) of the Ti-15Mo-W system. For experimental research, we chose the TiMo15 biocompatible alloy as a starting material. In order to improve the mechanical properties, we added tungsten amounts of 3.88 to 12.20 wt.% and analyzed the results obtained. The successive melting of the samples was done using a vacuum arc furnace in a copper crucible cooled with water. Following micro-structural investigations, we found this alloy possessed a homogeneous structure and showed β-phase predominance. The investigated alloys have good mechanical properties-the mean Vickers micro-hardness values are between 251 to 321 HV, the compressive strength values range from 717 to 921 MPa, and the modulus of elasticity is between 17.86 and 45.35 GPa. These results are compatible to the requirements of a metallic material for medical applications as artificial implant devices.

Keywords: hardness; metallic biomaterials; re-melting; stress–strain; titanium.