PROREPAIR-B: A Prospective Cohort Study of the Impact of Germline DNA Repair Mutations on the Outcomes of Patients With Metastatic Castration-Resistant Prostate Cancer

J Clin Oncol. 2019 Feb 20;37(6):490-503. doi: 10.1200/JCO.18.00358. Epub 2019 Jan 9.


Purpose: Germline mutations in DNA damage repair (DDR) genes are identified in a significant proportion of patients with metastatic prostate cancer, but the clinical implications of these genes remain unclear. This prospective multicenter cohort study evaluated the prevalence and effect of germline DDR (gDDR) mutations on metastatic castration-resistance prostate cancer (mCRPC) outcomes.

Patients and methods: Unselected patients were enrolled at diagnosis of mCRPC and were screened for gDDR mutations in 107 genes. The primary aim was to assess the impact of ATM/BRCA1/BRCA2/ PALB2 germline mutations on cause-specific survival (CSS) from diagnosis of mCRPC. Secondary aims included the association of gDDR subgroups with response outcomes for mCRPC treatments. Combined progression-free survival from the first systemic therapy (PFS) until progression on the second systemic therapy (PFS2) was also explored.

Results: We identified 68 carriers (16.2%) of 419 eligible patients, including 14 with BRCA2, eight with ATM, four with BRCA1, and none with PALB2 mutations. The study did not reach its primary end point, because the difference in CSS between ATM/BRCA1/BRCA2/PALB2 carriers and noncarriers was not statistically significant (23.3 v 33.2 months; P = .264). CSS was halved in germline BRCA2 (g BRCA2) carriers (17.4 v 33.2 months; P = .027), and g BRCA2 mutations were identified as an independent prognostic factor for CCS (hazard ratio [HR], 2.11; P = .033). Significant interactions between g BRCA2 status and treatment type (androgen signaling inhibitor v taxane therapy) were observed (CSS adjusted P = .014; PFS2 adjusted P = .005). CSS (24.0 v 17.0 months) and PFS2 (18.9 v 8.6 months) were greater in g BRCA2 carriers treated in first line with abiraterone or enzalutamide compared with taxanes. Clinical outcomes did not differ by treatment type in noncarriers.

Conclusion: g BRCA2 mutations have a deleterious impact on mCRPC outcomes that may be affected by the first line of treatment used. Determination of g BRCA2 status may be of assistance for the selection of the initial treatment in mCRPC. Nonetheless, confirmatory studies are required before these results can support a change in clinical practice.

Publication types

  • Multicenter Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Aged, 80 and over
  • Antineoplastic Agents / therapeutic use
  • Ataxia Telangiectasia Mutated Proteins / genetics
  • BRCA1 Protein / genetics
  • BRCA2 Protein / genetics*
  • Biomarkers, Tumor / genetics*
  • DNA Repair*
  • Genetic Predisposition to Disease
  • Germ-Line Mutation*
  • Humans
  • Male
  • Middle Aged
  • Phenotype
  • Progression-Free Survival
  • Prospective Studies
  • Prostatic Neoplasms, Castration-Resistant / drug therapy
  • Prostatic Neoplasms, Castration-Resistant / genetics*
  • Prostatic Neoplasms, Castration-Resistant / mortality
  • Prostatic Neoplasms, Castration-Resistant / pathology
  • Spain
  • Time Factors


  • Antineoplastic Agents
  • BRCA1 Protein
  • BRCA1 protein, human
  • BRCA2 Protein
  • BRCA2 protein, human
  • Biomarkers, Tumor
  • ATM protein, human
  • Ataxia Telangiectasia Mutated Proteins