Energy Transfer between Tm-Doped Upconverting Nanoparticles and a Small Organic Dye with Large Stokes Shift

Biosensors (Basel). 2019 Jan 8;9(1):9. doi: 10.3390/bios9010009.

Abstract

Lanthanide-doped upconverting nanoparticles (UCNP) are being extensively studied for bioapplications due to their unique photoluminescence properties and low toxicity. Interest in RET applications involving UCNP is also increasing, but due to factors such as large sizes, ion emission distributions within the particles, and complicated energy transfer processes within the UCNP, there are still many questions to be answered. In this study, four types of core and core-shell NaYF₄-based UCNP co-doped with Yb3+ and Tm3+ as sensitizer and activator, respectively, were investigated as donors for the Methyl 5-(8-decanoylbenzo[1,2-d:4,5-d']bis([1,3]dioxole)-4-yl)-5-oxopentanoate (DBD-6) dye. The possibility of resonance energy transfer (RET) between UCNP and the DBD-6 attached to their surface was demonstrated based on the comparison of luminescence intensities, band ratios, and decay kinetics. The architecture of UCNP influenced both the luminescence properties and the energy transfer to the dye: UCNP with an inert shell were the brightest, but their RET efficiency was the lowest (17%). Nanoparticles with Tm3+ only in the shell have revealed the highest RET efficiencies (up to 51%) despite the compromised luminescence due to surface quenching.

Keywords: DBD dye; core shell UCNP; resonance energy transfer; time-resolved luminescence.

MeSH terms

  • Fluorescence Resonance Energy Transfer*
  • Fluorescent Dyes / chemical synthesis
  • Fluorescent Dyes / chemistry
  • Fluorides / chemistry
  • Kinetics
  • Metal Nanoparticles / chemistry*
  • Temperature
  • Thulium / chemistry*
  • Ytterbium / chemistry
  • Yttrium / chemistry

Substances

  • Fluorescent Dyes
  • sodium yttriumtetrafluoride
  • Yttrium
  • Thulium
  • Ytterbium
  • Fluorides