Identification of diverse activating mutations of the RAS-MAPK pathway in histiocytic sarcoma

Mod Pathol. 2019 Jun;32(6):830-843. doi: 10.1038/s41379-018-0200-x. Epub 2019 Jan 9.

Abstract

Recent studies have demonstrated recurrent activating mutations involving the classical MAPK and PI3K signaling pathways in a large proportion of histiocytic neoplasms, such as Langerhans cell histiocytosis. However, very little is known about the molecular genetics of histiocytic sarcoma, a rare aggressive malignant neoplasm that shows pathologic characteristics of mature macrophages. Here we report the genomic characteristics of a large cohort of histiocytic sarcomas (n = 28) using a targeted next-generation sequencing approach to identify driver alterations. We identified recurrent mutations involving the RAS-MAPK signaling pathway (MAP2K1, KRAS, NRAS, BRAF, PTPN11, NF1, CBL) in a majority (57%) of histiocytic sarcoma cases and report a clinical response to a MEK inhibitor (Cobimetinib) in a patient with a NF1-mutated histiocytic sarcoma. A smaller subset of cases (21%) also showed mutations resulting in activation of the PI3K signaling pathway (PTEN, MTOR, PIK3R1, PIK3CA). In addition, the tumor-suppressor gene CDKN2A was the most frequently altered gene (46%). Further, a subset of histiocytic sarcoma cases shows striking molecular genetic similarities to B cell lymphomas, supporting a clonal relationship between B cell neoplasms and a subset of histiocytic sarcomas. These findings support a cooperative role for MAPK, PI3K, and cyclin-CDK4/6-INK4 signaling in the pathogenesis of histiocytic sarcoma and provide a rational basis for targeting these pathways.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Adult
  • Aged
  • Aged, 80 and over
  • Child
  • Female
  • Histiocytic Sarcoma / genetics*
  • Histiocytic Sarcoma / pathology
  • Humans
  • MAP Kinase Signaling System / genetics*
  • Male
  • Middle Aged
  • Mutation
  • Young Adult
  • ras Proteins / genetics*

Substances

  • ras Proteins