Adaptive evolution of microalgal strains empowered by fulvic acid for enhanced polyunsaturated fatty acid production
- PMID: 30630660
- DOI: 10.1016/j.biortech.2018.12.116
Adaptive evolution of microalgal strains empowered by fulvic acid for enhanced polyunsaturated fatty acid production
Abstract
Microalgae have emerged as the potential source for value-added products such as polyunsaturated fatty acids (PUFAs). Metabolic engineering of multiple metabolic pathways has promoted eicosapentaenoic acid (EPA) production in microalgae, however, further improvement is warranted owing to the burgeoning demand. Here we improved the microalgal strains by adaptive evolution under hyposalinity treatment, which showed that 70% salinity potentiated the algae to enhance PUFAs. To exploit the maximal PUFA production potential of evolved strains, we subjected evolved algae to light, temperature and fulvic acid treatment. Amongst, fulvic acid (15 mg/L) enhanced growth and achieved the highest EPA content (13.9%) in the evolved diatom. Fulvic acid enhanced antioxidant potential and unprecedently governed the expression of PUFA and lipid biosynthetic genes. Collectively, this investigation demonstrates the efficacy of adaptive evolution empowered by fulvic acid and exemplifies a feasible strain improving strategy to harness the biotechnological potential of microalgae.
Keywords: Adaptive evolution; Fulvic acid; Hyposalinity stress; Microalgal strain; Polyunsaturated fatty acids.
Copyright © 2019 Elsevier Ltd. All rights reserved.
Similar articles
-
Environmental evaluation of eicosapentaenoic acid production by Phaeodactylum tricornutum.Sci Total Environ. 2014 Jan 1;466-467:991-1002. doi: 10.1016/j.scitotenv.2013.07.105. Epub 2013 Aug 28. Sci Total Environ. 2014. PMID: 23994733
-
Enrichment of Long-Chain Polyunsaturated Fatty Acids by Coordinated Expression of Multiple Metabolic Nodes in the Oleaginous Microalga Phaeodactylum tricornutum.J Agric Food Chem. 2017 Sep 6;65(35):7713-7720. doi: 10.1021/acs.jafc.7b02397. Epub 2017 Aug 22. J Agric Food Chem. 2017. PMID: 28721723
-
Delta 5 fatty acid desaturase upregulates the synthesis of polyunsaturated fatty acids in the marine diatom Phaeodactylum tricornutum.J Agric Food Chem. 2014 Sep 3;62(35):8773-6. doi: 10.1021/jf5031086. Epub 2014 Aug 21. J Agric Food Chem. 2014. PMID: 25109502
-
Metabolic Engineering Strategies for the Enhanced Microalgal Production of Long-Chain Polyunsaturated Fatty Acids (LC-PUFAs).Biotechnol J. 2019 Jun;14(6):e1900043. doi: 10.1002/biot.201900043. Epub 2019 May 27. Biotechnol J. 2019. PMID: 31045311 Review.
-
Heterotrophic production of eicosapentaenoic acid by microalgae.Biotechnol Adv. 2003 Jul;21(4):273-94. doi: 10.1016/s0734-9750(03)00051-x. Biotechnol Adv. 2003. PMID: 14499126 Review.
Cited by
-
Biotechnological production of omega-3 fatty acids: current status and future perspectives.Front Microbiol. 2023 Nov 7;14:1280296. doi: 10.3389/fmicb.2023.1280296. eCollection 2023. Front Microbiol. 2023. PMID: 38029217 Free PMC article. Review.
-
Direct interspecies electron transfer mechanisms of a biochar-amended anaerobic digestion: a review.Biotechnol Biofuels Bioprod. 2023 Oct 3;16(1):146. doi: 10.1186/s13068-023-02391-3. Biotechnol Biofuels Bioprod. 2023. PMID: 37784139 Free PMC article. Review.
-
Adaptive laboratory evolution for increased temperature tolerance of the diatom Nitzschia inconspicua.Microbiologyopen. 2023 Feb;12(1):e1343. doi: 10.1002/mbo3.1343. Microbiologyopen. 2023. PMID: 36825881 Free PMC article.
-
Applying fulvic acid for sediment metals remediation: Mechanism, factors, and prospect.Front Microbiol. 2023 Jan 9;13:1084097. doi: 10.3389/fmicb.2022.1084097. eCollection 2022. Front Microbiol. 2023. PMID: 36699598 Free PMC article. Review.
-
Random Mutagenesis as a Promising Tool for Microalgal Strain Improvement towards Industrial Production.Mar Drugs. 2022 Jun 30;20(7):440. doi: 10.3390/md20070440. Mar Drugs. 2022. PMID: 35877733 Free PMC article. Review.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
