Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
, 25 (1), 48-60

Brain-Gut-Microbiota Axis in Alzheimer's Disease

Affiliations
Review

Brain-Gut-Microbiota Axis in Alzheimer's Disease

Karol Kowalski et al. J Neurogastroenterol Motil.

Abstract

Disturbances along the brain-gut-microbiota axis may significantly contribute to the pathogenesis of neurodegenerative disorders. Alzheimer's disease (AD) is the most frequent cause of dementia characterized by a progressive decline in cognitive function associated with the formation of amyloid beta (Aβ) plaques and neurofibrillary tangles. Alterations in the gut microbiota composition induce increased permeability of the gut barrier and immune activation leading to systemic inflammation, which in turn may impair the blood-brain barrier and promote neuroinflammation, neural injury, and ultimately neurodegeneration. Recently, Aβ has also been recognized as an antimicrobial peptide participating in the innate immune response. However, in the dysregulated state, Aβ may reveal harmful properties. Importantly, bacterial amyloids through molecular mimicry may elicit cross-seeding of misfolding and induce microglial priming. The Aβ seeding and propagation may occur at different levels of the brain-gut-microbiota axis. The potential mechanisms of amyloid spreading include neuron-to-neuron or distal neuron spreading, direct blood-brain barrier crossing or via other cells as astrocytes, fibroblasts, microglia, and immune system cells. A growing body of experimental and clinical data confirms a key role of gut dysbiosis and gut microbiota-host interactions in neurodegeneration. The convergence of gut-derived inflammatory response together with aging and poor diet in the elderly contribute to the pathogenesis of AD. Modification of the gut microbiota composition by food-based therapy or by probiotic supplementation may create new preventive and therapeutic options in AD.

Keywords: Alzheimer disease; Amyloid; Blood-brain barrier; Gastrointestinal microbiome; Inflammation.

Conflict of interest statement

Conflict of interest: None.

Figures

Figure 1
Figure 1
Amyloid beta (Aβ) plaque formation. Aβ is a cleavage product of amyloid precursor protein (APP). APP is a transmembrane protein which undergoes cleavage via amyloidogenic pathway involving 2 enzymes: β-secretase and γ-secretase. β-secretase cuts APP at a position outside the cell and γ-secretase cuts APP at a position inside the cell membrane. Misfolded proteins (Aβ40 and Aβ42) act as seeds that accelerate the protein aggregation into oligomers, fibrils, and amyloid plaques. The fibril then breaks forming new seeds allowing for self-propagation of the process. sAPPβ, soluble amyloid precursor protein β.
Figure 2
Figure 2
Disturbances of the brain-gut-microbiota axis in Alzheimer’s disease. Disturbances along the brain-gut-microbiota axis, including the central nervous system (CNS) and the enteric nervous system (ENS), contribute to the pathogenesis of Alzheimer’s disease. The gut microbiota is known to upregulate local and systemic inflammation due to lipopolysaccharides (LPS) from pathogenic bacteria and synthesis of proinflammatory cytokines. Alterations in the gut microbiota composition may induce increased permeability of the intestinal barrier and the blood-brain barrier further enhancing inflammation at the gut, systemic and CNS levels. Amyloid beta (Aβ) formation takes place in the ENS and the CNS. In addition, a large amount of amyloids is secreted by the gut microbiota.

Similar articles

See all similar articles

Cited by 22 articles

See all "Cited by" articles

References

    1. Dinan TG, Cryan JF. Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration. J Physiol. 2017;595:489–503. doi: 10.1113/JP273106. - DOI - PMC - PubMed
    1. Quigley EMM. Microbiota-brain-gut axis and neurodegenerative iseases. Curr Neurol Neurosci Rep. 2017;17:94. doi: 10.1007/s11910-017-0802-6. - DOI - PubMed
    1. Frasca D, Blomberg BB. Inflammaging decreases adaptive and innate immune responses in mice and humans. Biogerontology. 2016;17:7–19. doi: 10.1007/s10522-015-9578-8. - DOI - PMC - PubMed
    1. Köhler CA, Maes M, Slyepchenko A, et al. The gut-brain axis, including the microbiome, leaky gut and bacterial translocation: mechanisms and pathophysiological role in Alzheimer’s disease. Curr Pharm Des. 2016;22:6152–6166. doi: 10.2174/1381612822666160907093807. - DOI - PubMed
    1. Louveau A, Smirnov I, Keyes TJ, et al. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015;523:337–341. doi: 10.1038/nature14432. - DOI - PMC - PubMed

LinkOut - more resources

Feedback