Results of an Ocean Trial of the Symbiotic Machine for Ocean uRanium Extraction

Environ Sci Technol. 2019 Feb 19;53(4):2229-2237. doi: 10.1021/acs.est.8b05100. Epub 2019 Feb 11.

Abstract

Amidoxime-based adsorbents have become highly promising for seawater uranium extraction. However, current deployment schemes are stand-alone, intermittent operation systems that have significant practical and economic challenges. This paper presents two 1:10 scale prototypes of a Symbiotic Machine for Ocean uRanium Extraction (SMORE) which pairs with an existing offshore structure. This pairing reduces mooring and deployment costs while enabling continuous, autonomous uranium extraction. Utilizing a shell enclosure to decouple the mechanical and chemical requirements of the adsorbent, one design concept prototyped continuously moves the shells through the water while the other keeps them stationary. Water flow in the shells on each prototype was determined using the measurement of radium adsorbed by MnO2 impregnated acrylic fibers contained within each enclosure. The results from a nine-week ocean trial show that while movement of the shells through the water may not have an effect on uranium adsorption by the fibers encased, it could help reduce biofouling if above a certain threshold speed (resulting in increased uptake), while also allowing for the incorporation of design elements to further mitigate biofouling such as bristle brushes and UV lamps. The trace metal uptake by the AI8 adsorbents in this trial also varied greatly from previous marine deployments, suggesting that uranium uptake may depend greatly upon the seawater concentrations of other elements such as vanadium and copper. The results from this study will be used to inform future work on the seawater uranium production cost from a full-scale SMORE system.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adsorption
  • Oceans and Seas
  • Seawater
  • Uranium*
  • Water Pollutants, Radioactive*

Substances

  • Water Pollutants, Radioactive
  • Uranium