Motivation: The significance of long non-coding RNAs (lncRNAs) in many biological processes and diseases has gained intense interests over the past several years. However, computational identification of lncRNAs in a wide range of species remains challenging; it requires prior knowledge of well-established sequences and annotations or species-specific training data, but the reality is that only a limited number of species have high-quality sequences and annotations.
Results: Here we first characterize lncRNAs in contrast to protein-coding RNAs based on feature relationship and find that the feature relationship between open reading frame length and guanine-cytosine (GC) content presents universally substantial divergence in lncRNAs and protein-coding RNAs, as observed in a broad variety of species. Based on the feature relationship, accordingly, we further present LGC, a novel algorithm for identifying lncRNAs that is able to accurately distinguish lncRNAs from protein-coding RNAs in a cross-species manner without any prior knowledge. As validated on large-scale empirical datasets, comparative results show that LGC outperforms existing algorithms by achieving higher accuracy, well-balanced sensitivity and specificity, and is robustly effective (>90% accuracy) in discriminating lncRNAs from protein-coding RNAs across diverse species that range from plants to mammals. To our knowledge, this study, for the first time, differentially characterizes lncRNAs and protein-coding RNAs based on feature relationship, which is further applied in computational identification of lncRNAs. Taken together, our study represents a significant advance in characterization and identification of lncRNAs and LGC thus bears broad potential utility for computational analysis of lncRNAs in a wide range of species.
Availability and implementation: LGC web server is publicly available at http://bigd.big.ac.cn/lgc/calculator. The scripts and data can be downloaded at http://bigd.big.ac.cn/biocode/tools/BT000004.
Supplementary information: Supplementary data are available at Bioinformatics online.
© The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.