Characterization and identification of long non-coding RNAs based on feature relationship

Bioinformatics. 2019 Sep 1;35(17):2949-2956. doi: 10.1093/bioinformatics/btz008.


Motivation: The significance of long non-coding RNAs (lncRNAs) in many biological processes and diseases has gained intense interests over the past several years. However, computational identification of lncRNAs in a wide range of species remains challenging; it requires prior knowledge of well-established sequences and annotations or species-specific training data, but the reality is that only a limited number of species have high-quality sequences and annotations.

Results: Here we first characterize lncRNAs in contrast to protein-coding RNAs based on feature relationship and find that the feature relationship between open reading frame length and guanine-cytosine (GC) content presents universally substantial divergence in lncRNAs and protein-coding RNAs, as observed in a broad variety of species. Based on the feature relationship, accordingly, we further present LGC, a novel algorithm for identifying lncRNAs that is able to accurately distinguish lncRNAs from protein-coding RNAs in a cross-species manner without any prior knowledge. As validated on large-scale empirical datasets, comparative results show that LGC outperforms existing algorithms by achieving higher accuracy, well-balanced sensitivity and specificity, and is robustly effective (>90% accuracy) in discriminating lncRNAs from protein-coding RNAs across diverse species that range from plants to mammals. To our knowledge, this study, for the first time, differentially characterizes lncRNAs and protein-coding RNAs based on feature relationship, which is further applied in computational identification of lncRNAs. Taken together, our study represents a significant advance in characterization and identification of lncRNAs and LGC thus bears broad potential utility for computational analysis of lncRNAs in a wide range of species.

Availability and implementation: LGC web server is publicly available at The scripts and data can be downloaded at

Supplementary information: Supplementary data are available at Bioinformatics online.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms*
  • Animals
  • Mammals
  • Open Reading Frames*
  • Plants
  • Proteins
  • RNA, Long Noncoding*


  • Proteins
  • RNA, Long Noncoding