Adaptive, locally linear models of complex dynamics
- PMID: 30655347
- PMCID: PMC6358715
- DOI: 10.1073/pnas.1813476116
Adaptive, locally linear models of complex dynamics
Abstract
The dynamics of complex systems generally include high-dimensional, nonstationary, and nonlinear behavior, all of which pose fundamental challenges to quantitative understanding. To address these difficulties, we detail an approach based on local linear models within windows determined adaptively from data. While the dynamics within each window are simple, consisting of exponential decay, growth, and oscillations, the collection of local parameters across all windows provides a principled characterization of the full time series. To explore the resulting model space, we develop a likelihood-based hierarchical clustering, and we examine the eigenvalues of the linear dynamics. We demonstrate our analysis with the Lorenz system undergoing stable spiral dynamics and in the standard chaotic regime. Applied to the posture dynamics of the nematode Caenorhabditis elegans, our approach identifies fine-grained behavioral states and model dynamics which fluctuate about an instability boundary, and we detail a bifurcation in a transition from forward to backward crawling. We analyze whole-brain imaging in C. elegans and show that global brain dynamics is damped away from the instability boundary by a decrease in oxygen concentration. We provide additional evidence for such near-critical dynamics from the analysis of electrocorticography in monkey and the imaging of a neural population from mouse visual cortex at single-cell resolution.
Keywords: animal behavior; clustering; dynamical criticality; neural dynamics; time-series segmentation.
Copyright © 2019 the Author(s). Published by PNAS.
Figures
Similar articles
-
A Markovian dynamics for Caenorhabditis elegans behavior across scales.Proc Natl Acad Sci U S A. 2024 Aug 6;121(32):e2318805121. doi: 10.1073/pnas.2318805121. Epub 2024 Jul 31. Proc Natl Acad Sci U S A. 2024. PMID: 39083417 Free PMC article.
-
The whole worm: brain-body-environment models of C. elegans.Curr Opin Neurobiol. 2016 Oct;40:23-30. doi: 10.1016/j.conb.2016.06.005. Epub 2016 Jun 20. Curr Opin Neurobiol. 2016. PMID: 27336738 Review.
-
Emergence of long timescales and stereotyped behaviors in Caenorhabditis elegans.Proc Natl Acad Sci U S A. 2011 May 3;108(18):7286-9. doi: 10.1073/pnas.1007868108. Epub 2011 Apr 18. Proc Natl Acad Sci U S A. 2011. PMID: 21502536 Free PMC article.
-
A global brain state underlies C. elegans sleep behavior.Science. 2017 Jun 23;356(6344):eaam6851. doi: 10.1126/science.aam6851. Epub 2017 Jun 22. Science. 2017. PMID: 28642382
-
Caenorhabditis elegans: a model system for systems neuroscience.Curr Opin Neurobiol. 2009 Dec;19(6):637-43. doi: 10.1016/j.conb.2009.09.009. Epub 2009 Nov 4. Curr Opin Neurobiol. 2009. PMID: 19896359 Free PMC article. Review.
Cited by
-
A deep learning framework for inference of single-trial neural population dynamics from calcium imaging with subframe temporal resolution.Nat Neurosci. 2022 Dec;25(12):1724-1734. doi: 10.1038/s41593-022-01189-0. Epub 2022 Nov 24. Nat Neurosci. 2022. PMID: 36424431 Free PMC article.
-
A Markovian dynamics for Caenorhabditis elegans behavior across scales.Proc Natl Acad Sci U S A. 2024 Aug 6;121(32):e2318805121. doi: 10.1073/pnas.2318805121. Epub 2024 Jul 31. Proc Natl Acad Sci U S A. 2024. PMID: 39083417 Free PMC article.
-
Open-source tools for behavioral video analysis: Setup, methods, and best practices.Elife. 2023 Mar 23;12:e79305. doi: 10.7554/eLife.79305. Elife. 2023. PMID: 36951911 Free PMC article. Review.
-
Large-scale neural recordings call for new insights to link brain and behavior.Nat Neurosci. 2022 Jan;25(1):11-19. doi: 10.1038/s41593-021-00980-9. Epub 2022 Jan 3. Nat Neurosci. 2022. PMID: 34980926 Review.
-
Light evokes stereotyped global brain dynamics in Caenorhabditis elegans.Curr Biol. 2024 Jan 8;34(1):R14-R15. doi: 10.1016/j.cub.2023.10.043. Curr Biol. 2024. PMID: 38194919 Free PMC article.
References
-
- Arratia PE, Voth GA, Gollub JP. Stretching and mixing of non-Newtonian fluids in time-periodic flows. Phys Fluids. 2005;17:1–10.
-
- Alakent B, Doruker P, Çamurdan MC. Time series analysis of collective motions in proteins. J Chem Phys. 2004;120:1072–1088. - PubMed
-
- Li K, Javer A, Keaveny EE, Brown AE. 2017. Recurrent neural networks with interpretable cells predict and classify worm behaviour. bioRxiv:10.1101/222208. Preprint, posted November 20, 2017.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
