Myofibroblasts acquire retinoic acid-producing ability during fibroblast-to-myofibroblast transition following kidney injury

Kidney Int. 2019 Mar;95(3):526-539. doi: 10.1016/j.kint.2018.10.017. Epub 2019 Jan 17.

Abstract

Tubular injury and interstitial fibrosis are the hallmarks of chronic kidney disease. While recent studies have verified that proximal tubular injury triggers interstitial fibrosis, the impact of fibrosis on tubular injury and regeneration remains poorly understood. We generated a novel mouse model expressing diphtheria toxin receptor on renal fibroblasts to allow for the selective disruption of renal fibroblast function. Administration of diphtheria toxin induced upregulation of the tubular injury marker Ngal and caused tubular proliferation in healthy kidneys, whereas administration of diphtheria toxin attenuated tubular regeneration in fibrotic kidneys. Microarray analysis revealed down-regulation of the retinol biosynthesis pathway in diphtheria toxin-treated kidneys. Healthy proximal tubules expressed retinaldehyde dehydrogenase 2 (RALDH2), a rate-limiting enzyme in retinoic acid biosynthesis. After injury, proximal tubules lost RALDH2 expression, whereas renal fibroblasts acquired strong expression of RALDH2 during the transition to myofibroblasts in several models of kidney injury. The retinoic acid receptor (RAR) RARγ was expressed in proximal tubules both with and without injury, and αB-crystallin, the product of an RAR target gene, was strongly expressed in proximal tubules after injury. Furthermore, BMS493, an inverse agonist of RARs, significantly attenuated tubular proliferation in vitro. In human biopsy tissue from patients with IgA nephropathy, detection of RALDH2 in the interstitium correlated with older age and lower kidney function. These results suggest a role of retinoic acid signaling and cross-talk between fibroblasts and tubular epithelial cells during tubular injury and regeneration, and may suggest a beneficial effect of fibrosis in the early response to injury.

Keywords: chronic kidney disease; fibroblast; fibrosis; proximal tubule.

Publication types

  • Research Support, Non-U.S. Gov't
  • Video-Audio Media

MeSH terms

  • Aldehyde Dehydrogenase 1 Family / metabolism
  • Aldehyde Oxidoreductases / metabolism
  • Animals
  • Benzoates / pharmacology
  • Biomarkers / metabolism
  • Biopsy
  • Cell Line
  • Cell Proliferation / drug effects
  • Diphtheria Toxin / administration & dosage
  • Diphtheria Toxin / toxicity
  • Disease Models, Animal
  • Epithelial Cells / pathology
  • Fibrosis
  • Glomerulonephritis, IGA / pathology*
  • Humans
  • Kidney Tubules, Proximal / cytology
  • Kidney Tubules, Proximal / drug effects
  • Kidney Tubules, Proximal / pathology*
  • Lipocalin-2 / metabolism
  • Mice
  • Myofibroblasts / pathology*
  • Receptors, Retinoic Acid / antagonists & inhibitors
  • Receptors, Retinoic Acid / metabolism
  • Regeneration / drug effects
  • Renal Insufficiency, Chronic / etiology
  • Renal Insufficiency, Chronic / pathology*
  • Retinal Dehydrogenase / metabolism
  • Retinoic Acid Receptor gamma
  • Stilbenes / pharmacology
  • Tretinoin / metabolism*
  • Up-Regulation

Substances

  • 4-(2-(5,6-dihydro-5,5-dimethyl-8-(2-phenylethynyl)naphthalen-2-yl)ethen-1-yl)benzoic acid
  • Benzoates
  • Biomarkers
  • Diphtheria Toxin
  • Lipocalin-2
  • Receptors, Retinoic Acid
  • Stilbenes
  • Lcn2 protein, mouse
  • Tretinoin
  • Aldehyde Oxidoreductases
  • Aldehyde Dehydrogenase 1 Family
  • ALDH1A2 protein, human
  • RALDH2 protein, mouse
  • Retinal Dehydrogenase