Changes in GABA and glutamate receptors on auditory cortical excitatory neurons in a rat model of salicylate-induced tinnitus

Am J Transl Res. 2018 Dec 15;10(12):3941-3955. eCollection 2018.

Abstract

Tinnitus is associated with neural hyperactivity, which is regulated by neuronal plasticity in the auditory central system, especially the auditory cortex (AC). Excitatory neurons constitute approximately 70-85% of the total populations of neuronal cells. However, few reports have focused on the AMPA receptor (AMPAR) and the GABAA receptor (GABAAR) on the excitatory neuron in animal model of tinnitus. In this study, we gave rats a single or long-term of salicylate administrations. The tinnitus-like behavior was assessed by combination of the gap prepulse inhibition of acoustic startle (GPIAS) and the pre-pulse inhibition (PPI) tests. Using immunofluorescent staining, we examined whether the AMPAR and the GABAAR on the calcium/calmodulin-dependent protein kinase IIα (CaMKIIα) -labeled excitatory neurons in the auditory cortex underwent changes following salicylate treatment. The rats with 14 days of salicylate administration showed evidence of experiencing tinnitus, while the rats receiving a single dose of salicylate manifested no tinnitus-like behavior. Furthermore, the AMPAR and GABAAR responded in a homeostatic manner after a single dose of salicylate while those showing in a Hebbian way after long-term salicylate administration. Thus, the different patterns of plasticity change in cortical excitatory neurons might affect the generating of salicylate-induced tinnitus.

Keywords: GABA receptor; Tinnitus; auditory cortical excitatory neuron; glutamate receptor; salicylate.