Thermodynamically driven assemblies and liquid-liquid phase separations in biology
- PMID: 30672955
- DOI: 10.1039/c8sm02285b
Thermodynamically driven assemblies and liquid-liquid phase separations in biology
Abstract
The sustenance of life depends on the high degree of organization that prevails through different levels of living organisms, from subcellular structures such as biomolecular complexes and organelles to tissues and organs. The physical origin of such organization is not fully understood, and even though it is clear that cells and organisms cannot maintain their integrity without consuming energy, there is growing evidence that individual assembly processes can be thermodynamically driven and occur spontaneously due to changes in thermodynamic variables such as intermolecular interactions and concentration. Understanding the phase separation in vivo requires a multidisciplinary approach, integrating the theory and physics of phase separation with experimental and computational techniques. This paper aims at providing a brief overview of the physics of phase separation and its biological implications, with a particular focus on the assembly of membraneless organelles. We discuss the underlying physical principles of phase separation from its thermodynamics to its kinetics. We also overview the wide range of methods utilized for experimental verification and characterization of phase separation of membraneless organelles, as well as the utility of molecular simulations rooted in thermodynamics and statistical physics in understanding the governing principles of thermodynamically driven biological self-assembly processes.
Similar articles
-
Independent active and thermodynamic processes govern the nucleolus assembly in vivo.Proc Natl Acad Sci U S A. 2017 Feb 7;114(6):1335-1340. doi: 10.1073/pnas.1615395114. Epub 2017 Jan 23. Proc Natl Acad Sci U S A. 2017. PMID: 28115706 Free PMC article.
-
[Membraneless organelles and liquid-liquid phase separation – methods for their characterisation].Postepy Biochem. 2020 Jun 27;66(2):111-124. doi: 10.18388/pb.2020_330. Postepy Biochem. 2020. PMID: 32700504 Review. Polish.
-
Single-Protein Collapse Determines Phase Equilibria of a Biological Condensate.J Phys Chem Lett. 2020 Jun 18;11(12):4923-4929. doi: 10.1021/acs.jpclett.0c01222. Epub 2020 Jun 9. J Phys Chem Lett. 2020. PMID: 32426986
-
Phase-specific RNA accumulation and duplex thermodynamics in multiphase coacervate models for membraneless organelles.Nat Chem. 2022 Oct;14(10):1110-1117. doi: 10.1038/s41557-022-00980-7. Epub 2022 Jun 30. Nat Chem. 2022. PMID: 35773489
-
Liquid-Liquid phase separation in bacteria.Microbiol Res. 2024 Apr;281:127627. doi: 10.1016/j.micres.2024.127627. Epub 2024 Jan 17. Microbiol Res. 2024. PMID: 38262205 Review.
Cited by
-
Mechanism of Phase Separation in Aqueous Two-Phase Systems.Int J Mol Sci. 2022 Nov 19;23(22):14366. doi: 10.3390/ijms232214366. Int J Mol Sci. 2022. PMID: 36430844 Free PMC article.
-
How Glutamate Promotes Liquid-liquid Phase Separation and DNA Binding Cooperativity of E. coli SSB Protein.J Mol Biol. 2022 May 15;434(9):167562. doi: 10.1016/j.jmb.2022.167562. Epub 2022 Mar 26. J Mol Biol. 2022. PMID: 35351518 Free PMC article.
-
The pluses and minuses of microdroplet separation.Proc Natl Acad Sci U S A. 2023 Sep 12;120(37):e2311576120. doi: 10.1073/pnas.2311576120. Epub 2023 Aug 30. Proc Natl Acad Sci U S A. 2023. PMID: 37647366 Free PMC article. No abstract available.
-
Self-assembly coupled to liquid-liquid phase separation.PLoS Comput Biol. 2023 May 15;19(5):e1010652. doi: 10.1371/journal.pcbi.1010652. eCollection 2023 May. PLoS Comput Biol. 2023. PMID: 37186597 Free PMC article.
-
Defining basic rules for hardening influenza A virus liquid condensates.Elife. 2023 Apr 4;12:e85182. doi: 10.7554/eLife.85182. Elife. 2023. PMID: 37013374 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
