Single-cell RNA-seq denoising using a deep count autoencoder
- PMID: 30674886
- PMCID: PMC6344535
- DOI: 10.1038/s41467-018-07931-2
Single-cell RNA-seq denoising using a deep count autoencoder
Abstract
Single-cell RNA sequencing (scRNA-seq) has enabled researchers to study gene expression at a cellular resolution. However, noise due to amplification and dropout may obstruct analyses, so scalable denoising methods for increasingly large but sparse scRNA-seq data are needed. We propose a deep count autoencoder network (DCA) to denoise scRNA-seq datasets. DCA takes the count distribution, overdispersion and sparsity of the data into account using a negative binomial noise model with or without zero-inflation, and nonlinear gene-gene dependencies are captured. Our method scales linearly with the number of cells and can, therefore, be applied to datasets of millions of cells. We demonstrate that DCA denoising improves a diverse set of typical scRNA-seq data analyses using simulated and real datasets. DCA outperforms existing methods for data imputation in quality and speed, enhancing biological discovery.
Conflict of interest statement
The authors declare no competing interests.
Figures
Similar articles
-
DAE-TPGM: A deep autoencoder network based on a two-part-gamma model for analyzing single-cell RNA-seq data.Comput Biol Med. 2022 Jul;146:105578. doi: 10.1016/j.compbiomed.2022.105578. Epub 2022 May 6. Comput Biol Med. 2022. PMID: 35569337
-
Data denoising with transfer learning in single-cell transcriptomics.Nat Methods. 2019 Sep;16(9):875-878. doi: 10.1038/s41592-019-0537-1. Epub 2019 Aug 30. Nat Methods. 2019. PMID: 31471617 Free PMC article.
-
scDTL: enhancing single-cell RNA-seq imputation through deep transfer learning with bulk cell information.Brief Bioinform. 2024 Sep 23;25(6):bbae555. doi: 10.1093/bib/bbae555. Brief Bioinform. 2024. PMID: 39504481 Free PMC article.
-
Single-Cell RNA Sequencing for Studying Human Cancers.Annu Rev Biomed Data Sci. 2023 Aug 10;6:1-22. doi: 10.1146/annurev-biodatasci-020722-091857. Epub 2023 Apr 11. Annu Rev Biomed Data Sci. 2023. PMID: 37040737 Review.
-
Scanorama: integrating large and diverse single-cell transcriptomic datasets.Nat Protoc. 2024 Aug;19(8):2283-2297. doi: 10.1038/s41596-024-00991-3. Epub 2024 Jun 6. Nat Protoc. 2024. PMID: 38844552 Free PMC article. Review.
Cited by
-
Revealing lineage-related signals in single-cell gene expression using random matrix theory.Proc Natl Acad Sci U S A. 2021 Mar 16;118(11):e1913931118. doi: 10.1073/pnas.1913931118. Proc Natl Acad Sci U S A. 2021. PMID: 33836557 Free PMC article.
-
Demystifying "drop-outs" in single-cell UMI data.Genome Biol. 2020 Aug 6;21(1):196. doi: 10.1186/s13059-020-02096-y. Genome Biol. 2020. PMID: 32762710 Free PMC article.
-
Advancing Drug Discovery for Neurological Disorders Using iPSC-Derived Neural Organoids.Int J Mol Sci. 2021 Mar 6;22(5):2659. doi: 10.3390/ijms22052659. Int J Mol Sci. 2021. PMID: 33800815 Free PMC article. Review.
-
SPREd: A simulation-supervised neural network tool for gene regulatory network reconstruction.bioRxiv [Preprint]. 2023 Nov 13:2023.11.09.566399. doi: 10.1101/2023.11.09.566399. bioRxiv. 2023. Update in: Bioinform Adv. 2024 Jan 23;4(1):vbae011. doi: 10.1093/bioadv/vbae011 PMID: 38014297 Free PMC article. Updated. Preprint.
-
A systematic evaluation of single-cell RNA-sequencing imputation methods.Genome Biol. 2020 Aug 27;21(1):218. doi: 10.1186/s13059-020-02132-x. Genome Biol. 2020. PMID: 32854757 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
