Induction of Cell Death in Human A549 Cells Using 3-(Quinoxaline-3-yl) Prop-2-ynyl Methanosulphonate and 3-(Quinoxaline-3-yl) Prop-2-yn-1-ol

Molecules. 2019 Jan 23;24(3):407. doi: 10.3390/molecules24030407.

Abstract

Despite major advancements in the development of various chemotherapeutic agents, treatment for lung cancer remains costly, ineffective, toxic to normal non-cancerous cells, and still hampered by a high level of remissions. A novel cohort of quinoxaline derivatives designed to possess a wide spectrum of biological activities was synthesized with promising targeted and selective anticancer drug activity. Hence, this study was aimed at determining in vitro anticancer activity effects of a newly synthesized class of 3-(quinoxaline-3-yl) prop-2-ynyl quinoxaline derivatives on A549 lung cancer cells. An assessment of the quinoxaline derivatives ferric reducing power, free radical scavenging activity, cytotoxic activity, and ability to induce reactive oxygen species (ROS) production was performed using the Ferric Reducing Antioxidant Power (FRAP), 2,2-diphenyl-1-picryl-hydrazyl (DPPH), 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT) and 2',7'-dichlorodihydrofluorescein diacetate (H₂DCFDA) assays, respectively. The ability of the quinoxaline derivatives to induce apoptosis in A549 cells was assessed using the Acridine Orange/Ethidium Bromide (AO/EB) and Annexin V-FITC/Dead Cell Assay. Of the four quinoxaline derivatives tested, 3-(quinoxaline-3-yl) prop-2-ynyl methanosulphate (LA-39B) and 3-(quinoxaline-3-yl) prop-2-yn-1-ol (LA-55) displayed a dose-dependent reducing power, free-radical scavenging activity, inhibition of cell viability, and stimulation of ROS production which was accompanied by induction of apoptosis in A549 lung cancer cells. None of the quinoxaline derivatives induced cell death or ROS production in non-cancerous Raw 267.4 macrophage cells. Cytotoxicity was observed in A549 lung cancer, HeLa cervical cancer, and MCF-7 breast cancer cells albeit inhibition was more pronounced in A549 cells. The results of the study suggest that 3-(quinoxaline-3-yl) prop-2-ynyl methanosulphate and 3-(quinoxaline-3-yl) prop-2-yn-1-ol induce apoptotic cell death in A549 lung cancer cells.

Keywords: anticancer; antioxidant; apoptosis; free radicals; lung cancer; quinoxalines.

MeSH terms

  • A549 Cells
  • Antioxidants / chemical synthesis
  • Antioxidants / chemistry
  • Antioxidants / pharmacology*
  • Apoptosis / drug effects
  • Cell Cycle / drug effects
  • Cell Proliferation / drug effects*
  • Cell Survival / drug effects
  • Humans
  • Lung Neoplasms / drug therapy*
  • Lung Neoplasms / pathology
  • Quinoxalines / chemical synthesis
  • Quinoxalines / chemistry
  • Quinoxalines / pharmacology*
  • Reactive Oxygen Species / chemistry

Substances

  • Antioxidants
  • Quinoxalines
  • Reactive Oxygen Species